Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of the Quantitative Assessment Methods and Indices with HILS for Evaluating Performance of the EMB/CBS

2013-03-25
2013-01-0108
EMB (Electro-Mechanical Brake) system that removes hydraulic brake device from conventional brake systems completely can be considered as BbW (Brake-by-Wire) system in the full sense. As the research on the EMB system is actively conducted, it is also required to establish the test methods for the performance verification and evaluation of developed EMB system. In fact, however, the characteristics of the EMB system makes it difficult to apply it to an actual vehicle test due to the expense and safety matters in the process of the test and evaluation. Thus, this study developed the EMB HILS (Hardware In the Loop Simulation) system in application of the actual EMB system in order to verify the actuating response characteristics and control logic performance of the EMB system before an actual vehicle test.
Technical Paper

Development of a Fail-Safe Control Strategy for Electro-Mechanical Brake System

2013-03-25
2013-01-0055
The automotive industry is replacing more and more hydraulic systems by electronic system. This not only reduces the weight of vehicles, but also has the potential for a large number of new features [1]. Such a change has led to researches on XbW(X-by-Wire) without the existing mechanical connection and hydraulic system, among which the study on BbW(Brake-by-Wire) in relation to brake devices proceeded to the point of EHB(Electro-Hydraulic-Brake) and then EMB(Electro-Mechanical-Brake). In replacement of existing CBS(Conventional Brake System) with EMB, various advantages such as improvement of response performance and easy combination with various brake applications including ABS and ESC have been found. In fact, however, the problem of fail-safe has remained. This study, therefore, is to develop the control strategy with which the vehicle's longitudinal and lateral motion can follow the driver's steering intention upon failure of one EMB actuator for braking in straight and corner.
Technical Paper

Development of a Driver's Intention Determining Algorithm for a Steering System Based Collision Avoidance System

2013-03-25
2013-01-0054
In this paper, we suggest a new control algorithm for driver's intention judgment for collision avoidance using a steering system to improve the emergency steering system performance. Most of the collision avoidance systems proposed by previous works relied only on the braking systems. Recently the automotive industry began to consider ways to avoid collisions using the steering system. It is not hard to imagine that any steering-assisted collision avoidance algorithm must judge a driver's intention for lane change before any attempt at longitudinal avoidance is made. To improve the accuracy of driver's intention judgment and thus the performance of the emergency steering system, we developed a new algorithm based on on-center handling characteristics generated by the steering system. The performance of the proposed driver's intention algorithm was validated in the test of real vehicles as well as in the SILS environment.
X