Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Dynamic Simulation Software for Prediction of Hydrogen Temperature and Pressure during Fueling Process

2018-04-03
2018-01-1304
In this study, in order to relax the pre-cooling regulations at hydrogen fueling stations, we develop a software algorithm to simulate an actual hydrogen fueling process to Fuel Cell Vehicle (FCV) tanks. The simulation model in the software consists of the same filling equipment found at an actual hydrogen fueling station. Additionally, the same supply conditions (pre-cooling temperature, pressure and mass flow rate) as at a hydrogen fueling station were set to the simulation model. Based on the supply conditions, the software simulates the temperature and pressure of hydrogen in each part of filling equipment. In order to verify the accuracy of the software, we compare the temperature and pressure simulated at each stage of the filling process with experimental data. We show that by using the software it is possible to accurately calculate the hydrogen temperature and pressure at each point during the fueling process.
Journal Article

Field Validation of the MC Default Fill Hydrogen Fueling Protocol

2015-04-14
2015-01-1177
Appendix H of the SAE J2601 standard defines a development hydrogen fueling protocol named the MC Default Fill, which builds upon the foundation of the table based protocol, utilizing the same assumptions, boundary conditions, and process limits as the current standard. The MC Default Fill facilitates the following beyond the table based protocol: 1) the potential to provide faster, more consistent fueling times for fuel cell electric vehicle customers, and 2) the ability to continuously and dynamically adjust to a wide range of dispenser fuel delivery temperatures, allowing for more flexibility in station design. Computer simulations and laboratory bench tests were previously conducted and documented, validating the function and operation of the protocol.
X