Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Emissions Effects of Hydrogen as a Supplemental Fuel with Diesel and Biodiesel

2008-04-14
2008-01-0648
A 1.9 liter Volkswagen TDI engine has been modified to accomodate the addition of hydrogen into the intake manifold via timed port fuel injection. Engine out particulate matter and the emissions of oxides of nitrogen were investigated. Two fuels,low sulfur diesel fuel (BP50) and soy methyl ester (SME) biodiesel (B99), were tested with supplemental hydrogen fueling. Three test conditions were selected to represent a range of engine operating modes. The tests were executed at 20, 40, and 60 % rated load with a constant engine speed o 1700 RPM. At each test condition the percentage of power from hydrogen energy was varied from 0 to 40 %. This corresponds to hydrogen flow rates ranging from 7 to 85 liters per minute. Particulate matter (PM) emissions were measured using a scaning mobility particle sizer (SMPS) and a two stage micro dilution system. Oxides of nitrogen were also monitored.
Technical Paper

Cycle Efficiency and Gaseous Emissions from a Diesel Engine Assisted with Varying Proportions of Hydrogen and Carbon Monoxide (Synthesis Gas)

2011-04-12
2011-01-1194
This study investigates the combustion and emissions of a compression ignition (CI) engine operating with mixtures of hydrogen (H₂) and carbon monoxide (CO) injected with the intake air. Hydrogen and carbon monoxide were chosen as the gaseous fuels, because they represent the main fuel component of synthesis gas, which can be produced by a variety of methods and feed stocks. However, due to varying feed stock and production mechanisms, syngas composition can vary significantly. It is currently unknown how a varying H₂/CO (syngas) ratio affects the cycle efficiency and gaseous emissions. The experiments were performed on an air-cooled, naturally aspirated, direct injection diesel engine. The engine was operated at 1800 RPM with a compression ratio of 21.2:1. Two load conditions were tested; 2 bar and 4 bar net indicated mean effective pressure (IMEPⁿ). For all test conditions the added syngas demonstrated lower cycle efficiency than the diesel fuel baseline.
X