Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A PU Sound Intensity Probe Designed for High Temperature Use

2007-05-15
2007-01-2336
Normal microphones can't resist high temperatures. The recently developed particle velocity microphone, can resist temperatures up to 300 degrees Celsius (570 degrees Farenheit). Current R&D is focused on increasing the upper temperature of the sensor element to 600 degrees Celsius (1300 degrees Farenheit). A sound pressure (p) sensitive system is created with a particle velocity sensor, when it is placed in a small (4cm in length and 5mm in diameter) standing wave tube. This sound pressure arrangement is combined with a particle velocity sensitive (u) element and thus creating a pu (intensity) probe. All components of this novel sensor are made with special heat resistant materials. A model of the temperature dependence is derived and checked by measurements. The frequency response, polar pattern, selfnoise etc. of both pressure and velocity microphone are determined.
Technical Paper

Scan and Paint for Acoustic Leakage Inside the Car

2011-05-17
2011-01-1673
Leakage ranking of vehicle cabin interiors is an important quality index for a car. Noise transmission through weak areas has an important role in the interior noise of a car. Nowadays the acoustic leakage inside a cabin can be measured with different techniques: Microphone array-based holography, Trasmission loss measurement, Beamforming analysis, Sound intensity P-P measurements and ultrasound waves measurements. Some advantages and limits of those measurement approaches for quantifying the acoustic performance of a car are discussed in the first part of this paper. In the second part a new method for fast leakage detection and stationary noise mapping is presented using the Microflown PU probe. This method is called Scan & Paint. The Microflown sensor can measure directly the particle velocity which in the near field is much less affected by background noise and reflection compared with normal microphones.
Technical Paper

A Scanning Method for Source Visualization and Transfer Path Analysis Using a Single Probe

2011-05-17
2011-01-1664
There are several methods to capture and visualize the acoustic properties in the vicinity of an object. This article considers scanning PU probe based sound intensity and particle velocity measurements which capture both sound pressure and acoustic particle velocity. The properties of the sound field are determined and visualized using the following routine: while the probe is moved slowly over the surface, the pressure and velocity are recorded and a video image is captured at the same time. Next, the data is processed. At each time interval, the video image is used to determine the location of the sensor. Then a color plot is generated. This method is called the Scan and Paint method. Since only one probe is used to measure the sound field the spatial phase information is lost. It is also impossible to find out if sources are correlated or not. This information is necessary to determine the sound pressure some distance from the source, at the driver's ear for example.
Technical Paper

Further Development of Velocity-based Airborne TPA: Scan & Paint TPA as a Fast Tool for Sound Source Ranking

2012-06-13
2012-01-1544
The interior noise of a car is a general quality index for many OEM manufacturers. A reliable method for sound source ranking is often required in order to improve the acoustic performance. The final goal is to reduce the noise at some positions inside the car with the minimum impact on costs and weight. Although different methodologies for sound source localization (like beamforming or p-p sound intensity) are available on the market, those pressure-based measurement methods are not very suitable for such a complex environment. Apart from scientific considerations any methodology should be also “friendly” in term of cost, time and background knowledge required for post-processing. In this paper a novel approach for sound source localization is studied based on the direct measurement of the acoustic particle velocity distribution close to the surface. An airborne transfer path analysis is then performed to rank the sound pressure contribution from each sound source.
Technical Paper

Vehicle Acoustic Synthesis Method: Improving Acquisition Time by Using P-U Probes

2005-05-16
2005-01-2444
In order to reach OEMs acoustic treatment targets (improving performance while minimizing the weight and cost impact), we have developed an original hybrid approach called “Vehicle Acoustic synthesis method”[1] to simulate - and therefore to optimize - noise treatments for both insulation and absorption, and to calculate the resulting Sound Pressure Level (SPL) at ear points for the middle and high frequency range. To calculate the SPL, we identify equivalent volume velocity sources from intensity measurements, and combine them to acoustic transfer functions (panel/ear) measured or computed with ray tracing codes using the reciprocity principle. Compared to our first approach [1], this paper shows a new measurement technique using pressure-particle velocity probes [2]. This technique allows to reduce acquisition time by a factor four, and makes therefore possible a synthesis method on a complete car within two weeks.
X