Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Journal Article

Potential of Several Alternative Propulsion Systems for Light Rotorcrafts Applications

2013-09-17
2013-01-2230
Reducing greenhouse gas emissions to limit global warming is becoming one of the key issues of the 21st century. As a growing contributor to this phenomenon, the aeronautic transport sector has recently taken drastic measures to limit its impact on CO2 and pollutants, like the aviation industry entry in the European carbon market or the ACARE objectives. However the defined targets require major improvements in existing propulsion systems, especially on the gas generator itself. Regarding small power engines for business aviation, rotorcrafts or APU, the turboshaft is today a dominant technology, despite quite high specific fuel consumption. In this context, solutions based on Diesel Internal Combustion Engines (ICE), well known for their low specific fuel consumption, could be a relevant alternative way to meet the requirements of future legislations for low and medium power applications (under 1000kW).
Journal Article

Investigation on the Potential of Quantitatively Predicting CCV in DI-SI Engines by Using a One-Dimensional CFD Physical Modeling Approach: Focus on Charge Dilution and In-Cylinder Aerodynamics Intensity

2015-09-06
2015-24-2401
Increasingly restrictive emission standards and CO2 targets drive the need for innovative engine architectures that satisfy the design constraints in terms of performance, emissions and drivability. Downsizing is one major trend for Spark-Ignition (SI) engines. For downsized SI engines, the increased boost levels and compression ratios may lead to a higher propensity of abnormal combustions. Thus increased levels of Exhaust Gas Recirculation (EGR) are used in order to limit the appearance of knock and super-knock. The drawback of high EGR rates is the increased tendency for Cycle-to-Cycle Variations (CCV) it engenders. A possible way to reduce CCV could be the generation of an increased in-cylinder turbulence to accelerate the combustion process. To manage all these aspects, 1D simulators are increasingly used. Accordingly, adapted modeling approaches must be developed to deal with all the relevant physics impacting combustion and pollutant emissions formation.
Technical Paper

Effects of Controlling Oxygen Concentration on the Performance, Emission and Combustion Characteristics in a Downsized SI Engine

2013-09-08
2013-24-0056
In the present study, experiments were carried out in a single-cylinder downsized SI engine with different rates of oxygen (15% to 27% by volume in the total mixture of intake gases except fuel) and equivalence ratios (from 0.45 to 1). Therefore, the oxygen volume fraction is due to oxygen enrichment or nitrogen dilution. The study of the impact of controlling oxygen concentration on the combustion characteristics and emissions was performed at 1400 rpm, at several loads (Indicated Mean Effective Pressure (IMEP) from 400 to 1000 kPa). For each operation point, the spark advance and the intake pressure were adjusted simultaneously in order to maintain the load and obtain a minimum value of indicated Specific Fuel Consumption (SFC). The effect of oxygen concentration on the engine combustion characteristics was simulated by using the commercial software AMESim, with the combustion model developed by IFP-EN, and an adapted algorithm was used to avoid residual gas calibration.
X