Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Potential of Several Alternative Propulsion Systems for Light Rotorcrafts Applications

2013-09-17
2013-01-2230
Reducing greenhouse gas emissions to limit global warming is becoming one of the key issues of the 21st century. As a growing contributor to this phenomenon, the aeronautic transport sector has recently taken drastic measures to limit its impact on CO2 and pollutants, like the aviation industry entry in the European carbon market or the ACARE objectives. However the defined targets require major improvements in existing propulsion systems, especially on the gas generator itself. Regarding small power engines for business aviation, rotorcrafts or APU, the turboshaft is today a dominant technology, despite quite high specific fuel consumption. In this context, solutions based on Diesel Internal Combustion Engines (ICE), well known for their low specific fuel consumption, could be a relevant alternative way to meet the requirements of future legislations for low and medium power applications (under 1000kW).
Technical Paper

Modelling and Simulation of the Combustion of Ethanol blended Fuels in a SI Engine using a 0D Coherent Flame Model

2009-09-13
2009-24-0016
Motor fuels are today increasingly blended with oxygenate components to reduce global CO2 emissions. Among these components, biomass-derived ethanol is very popular for spark ignition engine operation as it is not only a renewable source of energy, but it also allows to increase the engine power and thermal efficiency. Indeed, ethanol has the advantage of a high latent heat of vaporization leading to the so-called “cooling effect” which allows to increase the air-mass flow rate in the engine while reducing the charge temperature. This last property of ethanol combined with its high octane index make the engine less sensitive to knock. Then, although ethanol is characterised by high combustion speeds, optimal values of spark advance can be maintained on a larger range of engine operating conditions and high compression ratios as well as increased levels of downsizing can be used, all these aspects contributing to improve fuel consumptions.
Technical Paper

Exploitation of Multi-Cycle Engine LES to Introduce Physical Perturbations in 1D Engine Models for Reproducing CCV

2012-04-16
2012-01-0127
In spark-ignition engines, Cycle-to-Cycle Variations (CCV) limit the optimization of engine operation since they induce torque variations and the occurrence of misfire and/or knock. A mean for limiting the related negative impact of CCV on fuel consumption and emissions would be control strategies able to address them. At present, engine simulation codes used for control purposes can only describe CCV linked to variations of gas exchanges in the air loop. CCV of the in-cylinder flow motion cannot be naturally captured by classical quasi-dimensional combustion chamber models. A convenient way to mimic CCV is to impose stochastic distributions of the combustion model parameters. Nevertheless, it is not always clear if these perturbations have physical bases as well as realistic ranges of variation.
Technical Paper

Effects of Controlling Oxygen Concentration on the Performance, Emission and Combustion Characteristics in a Downsized SI Engine

2013-09-08
2013-24-0056
In the present study, experiments were carried out in a single-cylinder downsized SI engine with different rates of oxygen (15% to 27% by volume in the total mixture of intake gases except fuel) and equivalence ratios (from 0.45 to 1). Therefore, the oxygen volume fraction is due to oxygen enrichment or nitrogen dilution. The study of the impact of controlling oxygen concentration on the combustion characteristics and emissions was performed at 1400 rpm, at several loads (Indicated Mean Effective Pressure (IMEP) from 400 to 1000 kPa). For each operation point, the spark advance and the intake pressure were adjusted simultaneously in order to maintain the load and obtain a minimum value of indicated Specific Fuel Consumption (SFC). The effect of oxygen concentration on the engine combustion characteristics was simulated by using the commercial software AMESim, with the combustion model developed by IFP-EN, and an adapted algorithm was used to avoid residual gas calibration.
X