Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

NOx Control Using Variable Exhaust Valve Timing and Duration

2010-04-12
2010-01-1204
As it is well known one of the most harmful emissions in SI engines is NOx and there are several ways to minimize NOx emission. Internal exhaust gas recirculation (IGR) is an effective way to control and minimize NOx concentration in exhaust gas. In this paper, a method for minimizing NOx emission by use of IGR and variable valve timing (VVT) is introduced. In this method, formation of NOx is controlled by mass fraction of residual gas (RG) and mass fraction of RG is controlled by variable timing of exhaust valves opening and closing so not only the timing of exhaust valves changes but also the lift profile of exhaust valves is variable. In this paper, first a thermodynamic model of a SI engine was developed and validated by experimental data. The model was a reliable tool for predicting engine performance and emission characteristics. The effect of variable exhaust valve timing on RG mass fraction, NOx formation and brake specific fuel consumption was investigated.
Technical Paper

Developing a State Space Model for a Turbocharged Diesel Engine Using Least Square Method

2011-04-12
2011-01-0758
In this paper a state space representation of a turbocharged diesel engine is provided based on off-line least square method. Internal combustion engines show high nonlinear behavior due to complicated combustion phenomena and air flow dynamics inside the engine. In development phase of modern control methods like LQR controller, an accurate state space model with meaningful and measurable states is required. Identification is the method of deriving a mathematical model for dynamic systems based on input-output data. In this paper a mean value model of a turbocharged diesel engine is employed to generate demanded input-output data for identification purposes. This nonlinear mean value model predicts engine speed as a function mass of fuel injected per cycle, injection timing (ξ), ambient pressure and temperature and external loads. In the next step the simulation data is used to develop a state space model around idle mode operation state.
X