Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Development and Validation of a New Zero-Dimensional Semi-Physical NOx Emission Model for a D.I. Diesel Engine Using Simulated Combustion Process

2015-04-14
2015-01-1746
Reducing NOx tailpipe emissions is one of the major challenges when developing automotive Diesel engines which must simultaneously face stricter emission norms and reduce their fuel consumption/CO2 emission. In fact, the engine control system has to manage at the same time the multiple advanced combustion technologies such as high EGR rates, new injection strategies, complex after-treatment devices and sophisticated turbocharging systems implemented in recent diesel engines. In order to limit both the cost and duration of engine control system development, a virtual engine simulator has been developed in the last few years. The platform of this simulator is based on a 0D/1D approach, chosen for its low computational time. The existing simulation tools lead to satisfactory results concerning the combustion phase as well as the air supply system. In this context, the current paper describes the development of a new NOx emission model which is coupled with the combustion model.
Technical Paper

Experimental Investigation of an In-Cylinder Sampling Technique for the Evaluation of the Residual Gas Fraction

2017-09-04
2017-24-0042
Residual gas plays a crucial role in the combustion process of SI engines. It acts as a diluent and has a huge impact on pollutant emissions (NOx and CO emissions), engine efficiency and tendency to knock. Therefore, characterizing the residual gas fraction is an essential task for engine modelling and calibration purposes. Thus, an in-cylinder sampling technique has been developed on a spark ignition VVT engine to measure residual gas fraction. Two gas sampling valves were flush mounted to the combustion chamber walls; they are located between the 2 intake valves and between intake and exhaust valves respectively. In-cylinder gas was sampled during the compression stroke and stored in a sampling bag using a vacuum pump. The process was repeated during a large number of engine cycles in order to get a sufficient volume of gas which was then characterized with a standard gas analyzer.
Technical Paper

Semi-Empirical 0D Modeling for Engine-Out Soot Emission Prediction in D.I. Diesel Engines

2016-04-05
2016-01-0562
Due to its harmful effect on both human health and environment, soot emission is considered as one of the most important diesel engine pollutants. In the last decades, the industrial engine manufacturers have been able to strongly reduce its engine-out value by many different techniques, in order to respect the stricter emission norms. Simulation modeling has played and continues to play a key role for this purpose in the engine control system development. In this context, this paper proposes a new soot emission model for a direct injection diesel engine. This soot model is based on a zero-dimensional semi-physical approach coupled with a crank-angle resolved combustion model and a thermodynamic calculation of the burned gas products temperature. Furthermore, a multi linear regression model has been used to estimate the soot emissions as function of significant physical combustion parameters.
Technical Paper

Analysis of Systematic Calibration of Heat Transfer Models on a Turbocharged GDI Engine Operating Map

2018-04-03
2018-01-0787
In order to simulate the working process, an accurate description of heat transfer occurring between in-cylinder gases and combustion chamber walls is required, especially regarding thermal efficiency, combustion and emissions, or cooling strategies. Combustion chamber wall heat transfer models are dominated by zero-dimensional semi-empirical models due to their good compromise between accuracy, complexity and computational efficiency. Classic models such as those from Woschni, Annand or Hohenberg are still widely used, despite having been developed on rather ancient engines. While numerous authors have worked on this topic in the past decades, little information can be found concerning the systematic calibration process of heat transfer models. In this paper, a systematic calibration method based on experimental data processing is tested on the complete operating map of a turbocharged GDI engine.
Technical Paper

Heat Release Rate Modeling Improvement in an Eulerian 1D Diesel Combustion Model

2018-04-03
2018-01-1127
Diesel engines are being more commonly used for light automotive applications, due to their higher efficiency. However, pollutant emissions can be higher than their gasoline counterparts, being difficult to reduce and control because reducing one pollutant increases another. One way to reduce emissions is by using multiple injection strategies. However, understanding multiple injections is no easy task, so far done by trial and error and experience. Therefore, a numerical 1D model is to be adapted to simulate multiple injection situations in a diesel engine. In a previous paper by the authors, an existing model was adapted with a thermal dilatation model to consider both radial and axial dilatations in the diesel spray. The base model used is that of Ma et al (based on the Eulerian model of Musculus and Kattke for inert diesel jets).
X