Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

An Analysis of Emissions at Low Ambient Temperature from Diesel Passenger Cars Using the WLTP Test Procedure

2020-09-15
2020-01-2186
The aim of this paper is to analyse the results of regulated and unregulated emissions and carbon dioxide (CO2) emissions of passenger cars equipped with compression-ignition engines that meet the emission Euro 6d standards. Both test vehicles featured selective catalytic reduction (SCR) systems for control of oxides of nitrogen (NOx) and one vehicle also featured a passive NOx absorber (PNA). Research was performed using the current European Union exhaust emission test methods for passenger cars (Worldwide harmonized Light vehicles Test Procedures (WLTP)). Emission testing was performed on a chassis dynamometer, within a climatic chamber, at two different ambient temperatures: 23°C (i.e. Type I test) and -7°C (known as a Type VI test - currently not required for this engine type according to EU legislative requirements).
Journal Article

Regulated and Unregulated Exhaust Emissions from CNG Fueled Vehicles in Light of Euro 6 Regulations and the New WLTP/GTR 15 Test Procedure

2015-04-14
2015-01-1061
The aim of this paper was to explore the influence of CNG fuel on emissions from light-duty vehicles in the context of the new Euro 6 emissions requirements and to compare exhaust emissions of the vehicles fueled with CNG and with gasoline. Emissions testing was performed on a chassis dynamometer according to the current EU legislative test method, over the New European Driving Cycle (NEDC). Additional tests were also performed on one of the test vehicles over the World Harmonized Light Vehicles Test Cycle (WLTC) according to the Global Technical Regulation No. 15 test procedure. The focus was on regulated exhaust emissions; both legislative (CVS-bag) and modal (continuous) analyses of the following gases were performed: CO (carbon monoxide), THC (total hydrocarbons), CH4 (methane), NMHC (non-methane hydrocarbons), NOx (oxides of nitrogen) and CO2 (carbon dioxide).
Journal Article

An Investigation into Cold Start Emissions from Compression Ignition Engines using EU Legislative Emissions Test Procedures

2013-04-08
2013-01-1304
Diesel (compression ignition, CI) engines are increasingly exploited in light-duty vehicles, due to their high efficiency and favorable characteristics. Limited work has been performed on CI cold-start emissions at low temperatures. This paper presents a discussion and a brief literature review of diesel cold-start emissions phenomena at low ambient temperatures and the results of tests performed on two European light-duty vehicles with Euro 5 CI engines. The tests were performed on a chassis dynamometer within an advanced climate-controlled test laboratory at BOSMAL Automotive Research and Development Institute, Poland to determine the deterioration in emission of gaseous (HC, CO, NOx, CO2) and solid (PM, PN) pollutants following the EU legislative test procedure (testing at 20°C to 30°C and at -7°C, performed over the NEDC). The tests revealed appreciable increases in emissions of regulated pollutants.
Journal Article

Low Ambient Temperature Cold Start Emissions of Gaseous and Solid Pollutants from Euro 5 Vehicles featuring Direct and Indirect Injection Spark-Ignition Engines

2013-09-08
2013-24-0174
Spark ignition (SI) engines are susceptible to excess emissions at low ambient temperatures. Direct injection leads to the formation of particulate matter (PM), and direct injection spark ignition (DISI) engines should show greater PM emissions at low ambient temperatures. This study compares excess emissions of gaseous and solid pollutants following cold start at a low ambient temperature and the standard test temperature. Euro 5 passenger cars were tested on a chassis dynamometer within BOSMAL's climate-controlled test chamber, according to European Union legislation (−7°C over the urban driving cycle (UDC), and at 25°C). Two vehicles were also tested over the entire New European Driving Cycle (NEDC). Emissions of regulated compounds and carbon dioxide were analyzed; particulate emissions (both mass and number) were also measured, all using standard procedures.
Technical Paper

A Study of RME-Based Biodiesel Blend Influence on Performance, Reliability and Emissions from Modern Light-Duty Diesel Engines

2008-04-14
2008-01-1398
The paper evaluates the possibility of using different biodiesel blends (mixture of diesel fuel and Fatty Acid Methyl Esters) in modern Euro 4/ Euro 5 direct-injection, common-rail, turbocharged, light-duty diesel engines. The influence of different quantity of RME in biodiesel blends (B5, B20, B30) on the emission measurement of gaseous pollutants, such as: carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx), carbon dioxide (CO2) and particulate matter (PM) for light-duty-vehicle (LDV) during NEDC cycle on the chassis dynamometer as well as engine performance and reliability in engine dyno tests were analysed. All test results presented have been to standard diesel fuel. The measurement and analysis illustrate the capability of modern light-duty European diesel engines fueled with low and medium percentages of RME in biodiesel fuel with few problems.
Technical Paper

The Effect of Pure RME and Biodiesel Blends with High RME Content on Exhaust Emissions from a Light Duty Diesel Engine

2009-11-02
2009-01-2653
The use of biofuels (biodiesel and gasoline-alcohol blends) in vehicle powertrains has grown in recent years in European Union, the United States, Japan, India, Brazil and many other countries due to limited fossil fuel sources and necessary reduction of anthropogenic CO2 emissions. European car manufacturers have approved up to 5 percent of biodiesel blend in diesel fuel (B5 biodiesel blend) which meets European fuel standards EN 14214 and EN 590. The goal for research is to achieve higher biodiesel content in diesel fuel B10 and B20, without resorting to larger diesel engines and fuel feed system modernization. This paper evaluates the possibility of using higher FAME content in biodiesel blends (mixture of diesel fuel and Fatty Acid Methyl Esters) in modern Euro 4 vehicle with direct-injection, common-rail and turbocharged light-duty diesel engine with standard engine ECU calibration and standard injection equipment (not tuned for biodiesel).
Technical Paper

The Effect of Various Petrol-Ethanol Blends on Exhaust Emissions and Fuel Consumption of an Unmodified Light-Duty SI Vehicle

2011-09-11
2011-24-0177
Due to limited fossil fuel resources and a need to reduce anthropogenic CO₂ emissions, biofuel usage is increasing in multiple markets. Ethanol produced from the fermentation of biomass has been of interest as a potential partial replacement for petroleum for some time; for spark-ignition engines, bioethanol is the alternative fuel which is currently of greatest interest. At present, the international market for ethanol fuel consists of E85 fuel (with 85 percent ethanol content), as well as lower concentrations of ethanol in petrol for use in standard vehicles (E5, E10). The impact of different petrol-ethanol blends on exhaust emissions from unmodified vehicles remains under investigation. The potential for reduced exhaust emissions, improved security of fuel supply and more sustainable fuel production makes work on the production and usage of ethanol and its blends an increasingly important research topic.
Technical Paper

A Study of Gasoline-Ethanol Blends Influence on Performance and Exhaust Emissions from a Light-Duty Gasoline Engine

2012-04-16
2012-01-1052
This paper evaluates the possibility of using bioethanol blends (mixtures of gasoline fuel and ethanol derived from biomass) of varying strengths in an unmodified, small-displacement European Euro 5 light-duty gasoline vehicle. The influence of different proportions of bioethanol in the fuel blend (E5, E10, E25, E50 and E85) on the emission of gaseous pollutants, such as: carbon monoxide, hydrocarbons, oxides of nitrogen and carbon dioxide was tested at normal (22°C) and low (-7°C) ambient temperatures for a light-duty vehicle during the NEDC cycle on a chassis dynamometer. Engine performance metrics were also tested. All test results are presented in comparison to standard European gasoline (E5). Tailpipe emission data presented here suggest that modest improvements in air quality could result from usage of low-to-mid ethanol blends in the vehicle tested.
Technical Paper

A Comparison of Carbon Dioxide Exhaust Emissions and Fuel Consumption for Vehicles Tested over the NEDC, FTP-75 and WLTC Chassis Dynamometer Test Cycles

2015-04-14
2015-01-1065
Due to concern over emissions of greenhouse gases (GHG; particularly carbon dioxide - CO2), energy consumption and sustainability, many jurisdictions now regulate fuel consumption, fuel economy or exhaust emissions of CO2. Testing is carried out under laboratory conditions according to local or regional procedures. However, a harmonized global test procedure with its own test cycle has been created: the World Harmonized Light Vehicles Test Cycle - WLTC. In this paper, the WLTC is compared to the New European Driving Cycle (NEDC) and the FTP-75 cycle used in the USA. A series of emissions tests were conducted at BOSMAL on a chassis dynamometer in a Euro 6-complaint test facility to determine the impact of the test cycle on CO2 emissions and fuel consumption. While there are multiple differences in the test cycles in terms of dynamicity, duration, distance covered, mean/maximum speed, etc, differences in results obtained over the three test cycles were reasonably limited.
X