Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Full-Vehicle Model Development for Prediction of Fuel Consumption

2013-04-08
2013-01-1358
A predictive model of a specific vehicle was modeled in the system-level physical modeling tool, MapleSim, for performance and fuel consumption prediction of a full vehicle powertrain, driving a multi-body chassis model with tire models. The project also includes investigation into overall fuel efficiency and effect on vehicle handling for different drive cycles. The goals of this project were to investigate: 1) the relationships between the forces at tire/road interfaces during various drive cycles and the fuel efficiency of a vehicle, and 2) the interaction between the powertrain and the chassis of the vehicle. To accomplish these goals, a complete vehicle model was created in the lumped-parameter physical modeling tool, MapleSim. A great deal of effort has gone into using real parameters and to assure that some mathematical rigour has been employed in its development.
Technical Paper

Virtual Prototyping of Electric Drive Systems for System-Level Parameter Studies and Optimization

2014-04-01
2014-01-1876
As the demand for electric motors and drives grows, designers and manufacturers are faced with the challenge of understanding the effects of often non-deterministic duty cycles on their products. Too often, flaws in the design that can lead to failure only come to light when a prototype is built, or worse, after the product has been launched, leading to delays in product releases or costly recalls. To help mitigate these risks, designers are increasingly turning to simulation technologies that not only allow the engineer to implement the electric drives and motors but also all the various engineering factors, such as mechanical loads, vibrations and thermal effects, together in a single “virtual prototype” to get a clearer idea of how the whole system will behave over multiple duty cycles.
X