Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Patient Demographics and Injury Characteristics of ER Visits Related to Powered-Scooters

2020-04-14
2020-01-0933
With growing environmental concerns associated with gas-powered vehicles and busier city streets, micro-mobility modes, including traditional bicycles and new technologies, such as electric scooters (e-scooters), are becoming solutions. In 2018, e-scooter usage overtook other shared micro-mobility modes with over 38 million e-scooter trips taken. Concurrently, the societal concern regarding the safety of these devices is also increasing. To examine the types of injuries associated with e-scooters and bicycles, the National Electronic Injury Surveillance System (NEISS), a probability sample of US hospitals that collects information from emergency room (ER) visits related to consumer products, was utilized. Records from September 2017 to December 2018 were extracted, and those associated with powered scooters were identified. Injury distributions by age, sex, race, treatment, diagnosis, and location on the body were explored.
Technical Paper

Evaluation of Operational Safety Assessment (OSA) Metrics for Automated Vehicles in Simulation

2021-04-06
2021-01-0868
The operational safety of automated driving system (ADS)-equipped vehicles (AVs) must be quantified using well-defined metrics in order to gain an unambiguous understanding of the level of risk associated with AV deployment on public roads. In this research, efforts to evaluate the operational safety assessment (OSA) metrics introduced in prior work by the Institute of Automated Mobility (IAM) are described. An initial validation of the proposed set of OSA metrics involved using the open-source simulation software Car Learning to Act (CARLA) and Scenario Runner, which are used to place a subject vehicle in selected scenarios and obtain measurements for the various relevant OSA metrics. Car following scenarios were selected from the list of 37 pre-crash scenarios identified by the National Highway Traffic Safety Administration (NHTSA) as the most common driving situations that lead to crash events involving two light vehicles.
Technical Paper

Evaluating the Severity of Safety Envelope Violations in the Proposed Operational Safety Assessment (OSA) Methodology for Automated Vehicles

2022-03-29
2022-01-0819
As the automated vehicle (AV) industry continues to progress, it is important to establish the level of operational safety of these vehicles prior to and throughout their deployment on public roads. The Institute of Automated Mobility (IAM) has previously proposed a set of operational safety assessment (OSA) metrics which can be used to quantify the operational safety of vehicles. The OSA metrics provide a starting point to consistently quantify performance, but a framework to interpret the metrics measurements is needed to objectively quantify the overall operational safety for a vehicle in a given scenario. This work aims to present an approach to applying a calculation of the safety envelope component of the OSA metrics to rear-world collisions for use in such an assessment. In this paper, the OSA methodology concept is introduced as a means for quantifying the operational safety of a vehicle.
Technical Paper

Validation and Analysis of Driving Safety Assessment Metrics in Real-world Car-Following Scenarios with Aerial Videos

2024-04-09
2024-01-2020
Data-driven driving safety assessment is crucial in understanding the insights of traffic accidents caused by dangerous driving behaviors. Meanwhile, quantifying driving safety through well-defined metrics in real-world naturalistic driving data is also an important step for the operational safety assessment of automated vehicles (AV). However, the lack of flexible data acquisition methods and fine-grained datasets has hindered progress in this critical area. In response to this challenge, we propose a novel dataset for driving safety metrics analysis specifically tailored to car-following situations. Leveraging state-of-the-art Artificial Intelligence (AI) technology, we employ drones to capture high-resolution video data at 12 traffic scenes in the Phoenix metropolitan area. After that, we developed advanced computer vision algorithms and semantically annotated maps to extract precise vehicle trajectories and leader-follower relations among vehicles.
Technical Paper

Comprehensive Evaluation of Behavioral Competence of an Automated Vehicle Using the Driving Assessment (DA) Methodology

2024-04-09
2024-01-2642
With the development of vehicles equipped with automated driving systems, the need for systematic evaluation of AV performance has grown increasingly imperative. According to ISO 34502, one of the safety test objectives is to learn the minimum performance levels required for diverse scenarios. To address this need, this paper combines two essential methodologies - scenario-based testing procedures and scoring systems - to systematically evaluate the behavioral competence of AVs. In this study, we conduct comprehensive testing across diverse scenarios within a simulator environment following Mcity AV Driver Licensing Test procedure. These scenarios span several common real-world driving situations, including BV Cut-in, BV Lane Departure into VUT Path from Opposite Direction, BV Left Turn Across VUT Path, and BV Right Turn into VUT Path scenarios.
Technical Paper

Evaluating Safety Metrics for Vulnerable Road Users at Urban Traffic Intersections Using High-Density Infrastructure LiDAR System

2024-04-09
2024-01-2641
Ensuring the safety of vulnerable road users (VRUs) such as pedestrians, users of micro-mobility vehicles, and cyclists is imperative for the commercialization of automated vehicles (AVs) in urban traffic scenarios. City traffic intersections are of particular concern due to the precarious situations VRUs often encounter when navigating these locations, primarily because of the unpredictable nature of urban traffic. Earlier work from the Institute of Automated Vehicles (IAM) has developed and evaluated Driving Assessment (DA) metrics for analyzing car following scenarios. In this work, we extend those evaluations to an urban traffic intersection testbed located in downtown Tempe, Arizona. A multimodal infrastructure sensor setup, comprising a high-density, 128-channel LiDAR and a 720p RGB camera, was employed to collect data during the dusk period, with the objective of capturing data during the transition from daylight to night.
Journal Article

Crash Test Methodology for Electric Scooters with Anthropomorphic Test Device (ATD) Riders

2022-03-29
2022-01-0853
As micromobility devices (i.e., e-bikes, scooters, skateboards, etc.) continue to increase in popularity, there is a growing need to test these devices for varying purposes such as performance assessment, crash reconstruction, and design of new products. Although tests have been conducted across the industry for electric scooters (e-scooters), this paper describes a novel method for crash testing e-scooters with anthropomorphic test devices (ATDs) “riding” them, providing new sources for data collection and research. A sled fixture was designed utilizing a pneumatic crash rail to propel the scooters with an overhead gantry used for stabilization of the ATD until release just prior to impact. The designed test series included impacts with a 5.5-inch curb at varying incidence angles, a stationary vehicle, or a standing pedestrian ATD. Test parameter permutations included changing e-scooter tire sizes, impact speeds, and rider safety equipment.
X