Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Micro-Mobility Vehicle Dynamics and Rider Kinematics during Electric Scooter Riding

2020-04-14
2020-01-0935
Micro-mobility is a fast-growing trend in the transportation industry with stand-up electric scooters (e-scooters) becoming increasingly popular in the United States. To date, there are over 350 ride-share e-scooter programs in the United States. As this popularity increases, so does the need to understand the performance capabilities of these vehicles and the associated operator kinematics. Scooter tip-over stability is characterized by the scooter geometry and controls and is maintained through operator inputs such as body position, interaction with the handlebars, and foot placement. In this study, testing was conducted using operators of varying sizes to document the capabilities and limitations of these e-scooters being introduced into the traffic ecosystem. A test course was designed to simulate an urban environment including sidewalk and on-road sections requiring common maneuvers (e.g., turning, stopping points, etc.) for repeatable, controlled data collection.
Technical Paper

Patient Demographics and Injury Characteristics of ER Visits Related to Powered-Scooters

2020-04-14
2020-01-0933
With growing environmental concerns associated with gas-powered vehicles and busier city streets, micro-mobility modes, including traditional bicycles and new technologies, such as electric scooters (e-scooters), are becoming solutions. In 2018, e-scooter usage overtook other shared micro-mobility modes with over 38 million e-scooter trips taken. Concurrently, the societal concern regarding the safety of these devices is also increasing. To examine the types of injuries associated with e-scooters and bicycles, the National Electronic Injury Surveillance System (NEISS), a probability sample of US hospitals that collects information from emergency room (ER) visits related to consumer products, was utilized. Records from September 2017 to December 2018 were extracted, and those associated with powered scooters were identified. Injury distributions by age, sex, race, treatment, diagnosis, and location on the body were explored.
Technical Paper

Sensitivity of Automated Vehicle Operational Safety Assessment (OSA) Metrics to Measurement and Parameter Uncertainty

2022-03-29
2022-01-0815
As the deployment of automated vehicles (AVs) on public roadways expands, there is growing interest in establishing metrics that can be used to evaluate vehicle operational safety. The set of Operational Safety Assessment (OSA) metrics, that include several safety envelope-type metrics, previously proposed by the Institute of Automated Mobility (IAM) are a step towards this goal. The safety envelope OSA metrics can be computed using kinematics derived from video data captured by infrastructure-based cameras and thus do not require on-board sensor data or vehicle-to-infrastructure (V2I) connectivity, though either of the latter data sources could enhance kinematic data accuracy. However, the calculation of some metrics includes certain vehicle-specific parameters that must be assumed or estimated if they are not known a priori or communicated directly by the vehicle.
Technical Paper

Validation and Analysis of Driving Safety Assessment Metrics in Real-world Car-Following Scenarios with Aerial Videos

2024-04-09
2024-01-2020
Data-driven driving safety assessment is crucial in understanding the insights of traffic accidents caused by dangerous driving behaviors. Meanwhile, quantifying driving safety through well-defined metrics in real-world naturalistic driving data is also an important step for the operational safety assessment of automated vehicles (AV). However, the lack of flexible data acquisition methods and fine-grained datasets has hindered progress in this critical area. In response to this challenge, we propose a novel dataset for driving safety metrics analysis specifically tailored to car-following situations. Leveraging state-of-the-art Artificial Intelligence (AI) technology, we employ drones to capture high-resolution video data at 12 traffic scenes in the Phoenix metropolitan area. After that, we developed advanced computer vision algorithms and semantically annotated maps to extract precise vehicle trajectories and leader-follower relations among vehicles.
Journal Article

Driving Safety Performance Assessment Metrics for ADS-Equipped Vehicles

2020-04-14
2020-01-1206
The driving safety performance of automated driving system (ADS)-equipped vehicles (AVs) must be quantified using metrics in order to be able to assess the driving safety performance and compare it to that of human-driven vehicles. In this research, driving safety performance metrics and methods for the measurement and analysis of said metrics are defined and/or developed. A comprehensive literature review of metrics that have been proposed for measuring the driving safety performance of both human-driven vehicles and AVs was conducted. A list of proposed metrics, including novel contributions to the literature, that collectively, quantitatively describe the driving safety performance of an AV was then compiled, including proximal surrogate indicators, driving behaviors, and rules-of-the-road violations.
X