Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Infrastructure-Based LiDAR Monitoring for Assessing Automated Driving Safety

2022-03-29
2022-01-0081
The successful deployment of automated vehicles (AVs) has recently coincided with the use of off-board sensors for assessments of operational safety. Many intersections and roadways have monocular cameras used primarily for traffic monitoring; however, monocular cameras may not be sufficient to allow for useful AV operational safety assessments to be made in all operational design domains (ODDs) such as low ambient light and inclement weather conditions. Additional sensor modalities such as Light Detecting and Ranging (LiDAR) sensors allow for a wider range of scenarios to be accommodated and may also provide improved measurements of the Operational Safety Assessment (OSA) metrics previously introduced by the Institute of Automated Mobility (IAM).
Technical Paper

Comparison of Infrastructure- and Onboard Vehicle-Based Sensor Systems in Measuring Operational Safety Assessment (OSA) Metrics

2023-04-11
2023-01-0858
The operational safety of Automated Driving System (ADS)-Operated Vehicles (AVs) are a rising concern with the deployment of AVs as prototypes being tested and also in commercial deployment. The robustness of safety evaluation systems is essential in determining the operational safety of AVs as they interact with human-driven vehicles. Extending upon earlier works of the Institute of Automated Mobility (IAM) that have explored the Operational Safety Assessment (OSA) metrics and infrastructure-based safety monitoring systems, in this work, we compare the performance of an infrastructure-based Light Detection And Ranging (LIDAR) system to an onboard vehicle-based LIDAR system in testing at the Maricopa County Department of Transportation SMARTDrive testbed in Anthem, Arizona. The sensor modalities are located in infrastructure and onboard the test vehicles, including LIDAR, cameras, a real-time differential GPS, and a drone with a camera.
Technical Paper

Evaluating Safety Metrics for Vulnerable Road Users at Urban Traffic Intersections Using High-Density Infrastructure LiDAR System

2024-04-09
2024-01-2641
Ensuring the safety of vulnerable road users (VRUs) such as pedestrians, users of micro-mobility vehicles, and cyclists is imperative for the commercialization of automated vehicles (AVs) in urban traffic scenarios. City traffic intersections are of particular concern due to the precarious situations VRUs often encounter when navigating these locations, primarily because of the unpredictable nature of urban traffic. Earlier work from the Institute of Automated Vehicles (IAM) has developed and evaluated Driving Assessment (DA) metrics for analyzing car following scenarios. In this work, we extend those evaluations to an urban traffic intersection testbed located in downtown Tempe, Arizona. A multimodal infrastructure sensor setup, comprising a high-density, 128-channel LiDAR and a 720p RGB camera, was employed to collect data during the dusk period, with the objective of capturing data during the transition from daylight to night.
X