Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Coated Gasoline Particulate Filter Technology Development to Meet China6 PN Regulation

2020-04-14
2020-01-0387
With the introduction of stringent particulate number (PN) limits and real driving emission (RDE) requirements, gasoline particulate filters (GPFs) have been widely adopted in Europe and China. GPFs can be coated with different amounts of three-way catalyst (TWC) coating. Some applications use large amounts of washcoat (>100g/L) whereas some don’t use at all. Pressure drop (DP) and PN filtration efficiency (FE) are the top two design criteria. It is important to understand how various coating technologies can be applied to GPF technologies for optimized FE/DP performance. To study filter and coating interaction, a matrix of coated GPFs was prepared and tested for lab DP and vehicle PN based FE. The matrix includes samples with a wide range of washcoat loadings (WCLs), differing coating technologies that target more coating inside GPF filter walls (Tech A) or more on the surface of filter walls (Tech B), and GPF technologies with high and low mean pore size (MPS).
Journal Article

Filtration Efficiency and Pressure Drop Performance of Ceramic Partial Wall Flow Diesel Particulate Filters

2013-11-20
2013-01-9072
A simple 1-dimensional filter model, with symmetric and asymmetric channels, has been developed to investigate the fundamental behavior and performance of ceramic partial diesel particulate filters (PFs). The governing equations of mass and momentum are similar to those of a full DPF [7, 15]. A standard DPF with the plugs at its inlet face removed has been referred to as a ‘rear-plugged PF’ while, one with the plugs at the outlet face removed has been referred to as a ‘front-plugged PF’ in the present study. Removal of some of the plugs from a standard ceramic DPF reduces the (i) overall pressure drop (ΔP) across the filter, (ii) filtration efficiency (FE) of the DPF, and (iii) manufacturing cost. Partial filters stand a high chance of being deployed in diesel exhaust after-treatment systems for the emerging markets (Brazil, Russia, India, China) that follow Euro 4 emission regulations.
Technical Paper

Impacts of B20 Biodiesel on Cordierite Diesel Particulate Filter Performance

2009-11-02
2009-01-2736
Engine laboratory tests were conducted to assess the impact of B20 biodiesel on the performance of cordierite diesel particulate filters (DPFs). Test fuels included 20% soy based methyl ester blended into ultra low sulfur diesel fuel, and two ULSD on-road market fuels. B20 has a higher cetane number, boiling point and oxygen content than typical on-road diesel fuels. A comparative study was performed using a model year 2007 medium duty diesel truck engine. The aftertreatment system included a diesel oxidation catalyst (DOC) followed by a cordierite wall flow DPF. A laboratory-grade supplemental fuel doser was used in the exhaust stream for precise regeneration of the DPF. Tests revealed that the fuel dosing rate was higher and DOC fuel conversion efficiency was poorer for the B20 fuel during low exhaust temperature regenerations. The slip of B20 fuel past the DOC was shown to produce significantly higher exotherms in the DPF during regeneration.
Technical Paper

Measurement and Prediction of Filtration Efficiency Evolution of Soot Loaded Diesel Particulate Filters

2012-04-16
2012-01-0363
Experimental and theoretical methods are presented to characterize the transient filtration efficiency (FE) behavior of Diesel Particulate Filters (DPFs) exposed to soot laden exhaust gas streams under laboratory and engine exhaust conditions. A (1+1) dimensional transient model, comprising a one dimensional channel model in combination with a one dimensional wall microstructure model is presented to study the sensitivity of the FE behavior on DPF microstructure and geometry properties, along with the impact of the hydrodynamic and aerosol flow conditions (flow rate, temperature, aerosol characteristics). The dynamic model also considers the dynamic soot oxidation by passive regeneration. The model has been validated through use of an extensive set of experimental data obtained under different operating conditions and with DPFs of different microstructure.
Technical Paper

Effect of Ash on Gasoline Particulate Filter Using an Accelerated Ash Loading Method

2018-04-03
2018-01-1258
Gasoline particulate filter (GPF) is considered a suitable solution to meet the increasingly stringent particle number (PN) regulations for both gasoline direct injection (GDI) and multi-port fuel injection (MPI) engines. Generally, GDI engines emit more particulate matter (PM) and PN. In recent years, GDI engines have gained significant market penetration in the automobile industry owing to better fuel economy and drivability. In this study, an accelerated ash loading method was tested by doping lubricating oil into the fuel for a GDI engine. Emission tests were performed at different ash loads with different driving cycles and GPF combinations. The results showed that the GPF could significantly reduce particle emissions to meet the China 6 regulation. With further ash loading, the filtration efficiency increased above 99% and the effects on fuel consumption and backpressure were found to be limited, even with an ash loading of up to 50 g/l.
Technical Paper

On-Vehicle Fuel Cut Testing for Gasoline Particulate Filter Applications

2019-04-02
2019-01-0968
With the introduction of a stringent particulate number (PN) limit and real driving emission (RDE) requirements, gasoline particulate filters (GPF) are widely adopted for gasoline engines in Europe and China. The filter collects soot and ash. Like in diesel applications, the collected soot will continuously burn under favorable exhaust conditions. However, at extreme conditions, there could be large amounts of soot build-up, which may induce a highly exothermal event, potentially damaging the filter. Thus, it is important to understand what drives the over-heating in application, and develop counter measures. In this study, an on-vehicle fuel cut (FC) testing procedure was developed. The testing was conducted on two vehicles, one gasoline direct injection (GDI) vehicle and one multiple port injection (MPI) vehicle, with different exhaust systems designs (a close coupled GPF and an under floor GPF) and catalyst coating levels (bare and heavily coated GPFs).
Technical Paper

Challenges and Solutions to Meeting Eu VII Particle Number Requirements during Aggressive Field Operation

2023-04-11
2023-01-0386
The heavy duty (HD) Eu VII regulations, going into effect starting 2027, has aggressive particle number (PN) emissions limits under extended operating conditions compared to existing Eu VI framework. In addition to the proposed hot-start PN limit of 2.0E+11 #/kWh, which is a >65% reduction vs. Eu VI E, the particle size cut-off is being extended from 23nm+ to 10nm+ while also including nearly all field operating conditions such as regeneration events, wider ambient boundaries etc. The tighter limits coupled with a work-based window approach to evaluate emissions is driving the need for the next generation of ultra-high filtration efficiency (FE), diesel particulate filter (DPF) technologies. The current study evaluates the FE performance of different DPF solutions under development, over a range of challenging on-road conditions characterized by frequent high temperature events which are not actively triggered.
Technical Paper

A Study into the Impact of Engine Oil on Gasoline Particulate Filter Performance through a Real-World Fleet Test

2019-04-02
2019-01-0299
Increasingly stringent vehicle emissions legislation is being introduced throughout the world, regulating the allowed levels of particulate matter emitted from vehicle tailpipes. The regulation may prove challenging for gasoline vehicles equipped with modern gasoline direct injection (GDI) technology, owing to their increased levels of particulate matter production. It is expected that gasoline particulate filters (GPFs) will soon be fitted to most vehicles sold in China and Europe, allowing for carbonaceous particulate matter to be effectively captured. However, GPFs will also capture and accumulate non-combustible inorganic ash within them, mainly derived from engine oil. Studies exist to demonstrate the impact of such ash on GPF and vehicle performance, but these commonly make use of accelerated ash loading methods, which themselves introduce significant variation.
Technical Paper

Gasoline Particulate Filter Applications for Plug-In Hybrid and Traditional Cars

2020-04-14
2020-01-1430
Plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) are considered as primary paths in China to meet corporate average fuel consumption (CAFC) credit and new energy vehicle (NEV) credit regulations. Many local original equipment manufacturers (OEMs) develop PHEVs based on their internal combustion engine (ICE) base models without significant modification on engine side. Traditional ICE vehicles are solely driven by engines, while PHEVs can be driven by engine or electric motors, independently or together, depending on powertrain architecture and operating strategy. PHEVs may have more particle number or particulate matter (PN/PM) emissions. To meet CN6 regulation, gasoline particulate filters (GPFs) are widely used for both PHEV and traditional cars. It is important to investigate the impacts of hybrid powertrain on gasoline particulate filter applications.
Technical Paper

Particulate filter performance mapping for in-service conformity

2024-04-09
2024-01-2382
The proposed Euro-7 regulations are expected to build on the significant emissions reductions that have already been achieved using advanced Euro VI compliant after treatment systems (ATS). The introduction of in-service conformity (ISC) requirements during Euro VI paved the way for enabling compliance during real-world driving conditions. The diverse range of applications and resulting operating conditions greatly impact ATS design and the ability of the diesel particulate filter (DPF) to maintain performance under the most challenging boundary conditions including cold starts, partial/complete regenerations, and high passive soot burn operation. The current study attempts to map the particle number (PN) filtration performance of different DPF technologies under a variety of in-use cycles developed based on field-data from heavy duty Class-8 / N3 vehicles.
X