Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Experimental Performance Analysis of Multi-Channel Active Control System for Road Noise in Vehicles Using FXLMS Algorithm

2020-04-14
2020-01-1277
It’s significant to analyze the Experimental performance of active control system for road noise. In this paper, a 2-channel active control system of vehicle road noise based on FXLMS algorithm is established. The complexity of Filtered-x Least Mean Square algorithm (FXLMS) is analyzed. The bench test and road test are carried out to test and analyze the performance of the control system. Firstly, the general mathematic model of the multi-channel active control system based on FXLMS algorithm is established. The computational complexity of the algorithm is analyzed. Secondly, a hardware-in-the-loop (HIL) test bench based on multi-channel FXLMS algorithm and a measurement system based on DASP are set up, to measure the noise reduction performance of active noise control system under various working conditions. Finally, the bench test and the road test are carried out and the results are analyzed.
Technical Paper

Parameter Analysis and Optimization of Road Noise Active Control System

2022-03-29
2022-01-0313
The parameter setting has a great influence on the noise reduction performance of the road noise active control (RNC) system. This paper analyzes and optimizes the parameters of the RNC system. Firstly, the model of the RNC system is established based on the FxLMS algorithm. Based on this model, taking the maximum noise reduction as the evaluation index, the sensitivity analysis of convergence coefficient, filter order, and reference signal gain was carried out using the Sobol method with the data measured by a real vehicle on asphalt pavement at 40km/h. The results show that there is no significant interaction between the three parameters. Then, using the idea of orthogonal experiment, the simulation results of the control model are analyzed by taking the maximum noise reduction as the evaluation index. It is found that the convergence coefficient has the greatest effect on the maximum noise reduction, followed by the filter order, and the reference signal gain has the least effect.
Technical Paper

Study on Brake Disc Dynamics under Asymmetric Thermal Loads

2018-10-05
2018-01-1901
In order to explore the generation mechanism of hot-spots on the automotive brake disc, disc tests under non-frictional thermal loads are carried out on the brake dynamometer test bench. In the tests, the oxy-acetylene flame is used as the heat source, and the distribution characteristics of the disc temperature and displacement are measured and analyzed. To confirm the mechanism of the disc deformation, a disc thermal buckling model using finite element method is established, and the key factors for the disc thermal buckling under thermal loads are further analyzed. It is found that the temperature circumferential gradient is small but the temperature radial gradient is large. The disc presents waviness deformation mode with 5th order in circumferential direction, which is the first thermal buckling mode of the disc. A method using spatial frequency spectrum has been proposed to find the critical time and load of thermal buckling.
Technical Paper

Performance Testing and Analysis of Multi-Channel Active Control System for Vehicle Interior Noise Using Adaptive Notch Filter

2019-06-05
2019-01-1567
It is considered that slow convergence speed and large calculation amount of commonly used adaptive algorithm in the active control system for vehicle interior noise yield noise reduction performance and hardware requirements problems. In this paper, a 4-channel active control of vehicle interior noise based on adaptive notch filter is established, and road test is carried out to test and analyze the performance of the control system. Firstly, the general mathematic model of the multi-channel active control system based on adaptive notch filter is established. The computational complexity of the algorithm is analyzed and compared with that of the FXLMS algorithm. Secondly, a hardware-in-the-loop test bench based on multi-channel adaptive notch filter is set up, to measure the noise reduction performance of ANC system under various working conditions.
Technical Paper

Modeling and Analysis of Temperature Field of Permanent Magnet Synchronous Motor Considering High Frequency Magnetic Field Characteristics

2020-04-14
2020-01-0457
The vehicle permanent magnet synchronous motor has the advantages of high power density, compact structure and small size, which makes it generate heat obviously in the process of energy conversion, which seriously affects the service life of the motor and the performance of permanent magnet. Predicting magnet temperature is a challenging task, in lab and various specialized applications, infrared sensors or thermocouples are used to measure the temperature, but it cost a lot. In order to predict the temperature field of the motor, the hysteresis characteristic test of the core material of the motor is carried out in this paper. The hysteresis characteristic and loss of electrical steel under different temperature, magnetic field intensity and magnetic field frequency are tested. It is found that the loss of electrical steel increases with the increase of magnetic induction intensity and magnetic field frequency.
X