Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

2017-03-28
2017-01-0183
It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements.
Technical Paper

Economic and Climate Advantages: Secondary-Loop Motor Vehicle Air Conditioners (MACs)

2018-05-30
2018-37-0030
This paper and presentation compare the thermal, economic and climate performance of existing direct expansion motor vehicle air conditioners (DX-MACs) using hydrofluorocarbon (HFC)-134a (global warming potential (GWP) =1300) with secondary-loop MACs (SL-MACs) using hydrofluoroolefin (HFO)-1234yf (GWP < 1) and HFC-152a (GWP = 138), both of which satisfy the European Union (EU) and Japan F-gas regulations and are listed as acceptable by the US Environmental Protection Agency (US EPA). In addition to a technical review of the SL-MAC system, the paper includes a part-by-part system manufacturing cost comparison and itemized ownership cost comparison taking into account fuel savings and reduced maintenance. The paper is timely because the Kigali Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer now requires both developed and developing countries to phase down the production and consumption of HFCs and at the same time encourages increases in energy efficiency.
Technical Paper

Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

2016-04-05
2016-01-0248
Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating.
Technical Paper

Latest Options for Replacing HFC-134a Refrigerant in MACs

2020-04-14
2020-01-1254
With the passage of the Kigali Amendment to the Montreal Protocol, HFC-134a refrigerant will be phased down in all markets worldwide, including those where automotive companies have been slow to embrace HFO-1234yf. Engineers are currently being challenged to design MAC systems using alternate low GWP refrigerants that are allowed by regulations, and are simultaneously cost-effective to manufacture, energy efficient, safe, reliable, affordable for consumers, and also suitable in electrified vehicles.
X