Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Ethanol Detection in Flex-Fuel Direct Injection Engines Using In-Cylinder Pressure Measurements

2009-04-20
2009-01-0657
A method for detection of ethanol content in fuel for an engine equipped with direct injection (DI) is presented. The methodology is based on in-cylinder pressure measurements during the compression stroke and exploits the different charge cooling properties of ethanol and gasoline. The concept was validated using dynamometer data of a 2.0L DI turbocharged engine with variable valve timing (VVT). An algorithm was developed to process the experimental data and generate a residue from the complex cycle-to-cycle in-cylinder pressure evolution which captures the charge cooling effect. The experimental results show that there is a monotonic correlation between the residues and the fuel ethanol percentage in the majority of the cases. However, the correlation varies for different engine operating parameters; such as, speed, load, valve timing, fuel rail pressure, intake and exhaust temperature and pressure.
Journal Article

Parameter Optimization of a Turbo Charged Direct Injection Flex Fuel SI Engine

2009-04-20
2009-01-0238
With the increased interest in the use of ethanol as an alternative fuel to gasoline, Original Equipment Manufacturers (OEMs) have responded by adapting their current range of vehicles to be able to run on gasoline/ethanol blends. Flex fuel vehicles are defined are defined as those that are capable of running gasoline up to 100% ethanol. Other than changes to materials compatibility, to enable the required durability targets to be met when running on ethanol, very little in the way of changes are performed to take advantage of the properties of ethanol. Calibration changes are typically limited to changes in fueling requirements and ignition timing. The physical and chemical properties of ethanol/gasoline blends offer a mixture of advantages and disadvantages. Lower energy density in the form of lower heating value reduces vehicle range whilst higher octane ratings make these excellent fuels for boosted operation.
Technical Paper

Ethanol Content Estimation in Flex Fuel Direct Injection Engines Using In-Cylinder Pressure Measurements

2010-04-12
2010-01-0166
Flexible fuel vehicles (FFVs) are able to operate on a blend of ethanol and gasoline in any volumetric concentration of up to 85% ethanol (93% in Brazil). The estimation of ethanol content is crucial for optimized and robust performance in such vehicles. Even if an ethanol sensor is utilized, an estimation scheme independent of the ethanol sensor measurement retains advantages in enhancing the reliability of ethanol estimation and allowing on-board diagnostics. It is well-known that an exhaust gas oxygen (EGO) sensor could be utilized to estimate the ethanol content, which exploits the difference in stoichiometric air-to-fuel ratio (SAFR) between ethanol (9.0) and gasoline (14.6). The SAFR-based ethanol estimation has been shown to be prone to large errors with mass air flow sensor bias and/or fuel injector shift.
X