Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Improvement and Validation of Hybrid III Dummy Knee Finite Element Model

2015-04-14
2015-01-0449
The public Hybrid III family finite element models have been used in simulation of automotive safety research widely. The validity of an ATD finite element model is largely dependent on the accuracy of model structure and accurate material property parameters especially for the soft material. For Hybrid III 50th percentile male dummy model, the femur load is a vital parameter for evaluating the injury risks of lower limbs, so the importance of accuracy of knee subcomponent model is obvious. The objective of this work was to evaluate the accuracy of knee subcomponent model and improve the validity of it. Comparisons between knee physical model and knee finite element model were conducted for both structure and property of material. The inaccuracy of structure and the material model of the published model were observed.
Technical Paper

Modeling and Application of a Pregnant 5th Percentile Female Occupant

2007-06-12
2007-01-2492
A 32-week pregnant 5th percentile female occupant model was developed. The uterus with fetus, amniotic fluid, placenta, fat, and ligaments, etc. was modeled by finite element methods, and it was integrated into MADYMO facet 5th percentile female occupant model. The model was validated via abdominal response corridors under belt loading and bar loading. It was used to study the strain of the uterine wall where the placental is contacted during car crash accidents, for the placental abruption is one of the major risks to the fetus. The simulation results show that the traditional 3-pt belt may not provide good protection for the fetus due to large strain can be found during car crash. So, two kinds of new belts were presented. They use different kinds of sheets to enwrap the protuberant abdomen of the pregnant female occupant in order to decrease the movement of the uterus relatively to the body. Thus, the strain of the uterine wall can be decreased significantly.
Technical Paper

Study on the Step by Step Energy Absorption Method Based on the Theory of Reverse Design

2007-08-05
2007-01-3685
As the length of the frontal structure of the minibus can't be as long as cars, some new methods have to be developed to maximum the effect of the energy absorption. In this paper, a step-by-step energy absorption method which based on reverse design was proposed. Two plates with different size and different thickness which can take part in the energy absorption step by step were added in each of the rectangular longitudinal beams. Finite element models were developed both for rectangular beam and minibus. Multi-body model was also developed for the restraint system. The validation of the rectangular beam model was done by sled test, and the minibus model was done by minibus crash test. The computational results matched well with the test results. Then, orthogonal experimental method was used to find the most effective parameters for the energy absorption. These parameters were optimized in the simulation of minibus crash.
Technical Paper

Structural Improvement for the Crash Safety of Commercial Vehicle

2009-10-06
2009-01-2917
Statistic analysis on commercial vehicle crash accidents in China were done by using the annual traffic accident reports from Ministry of Public Security. The Chinese crash safety rules on commercial vehicle were introduced. The main reasons which cause severe injury to the passenger in the cab in frontal crash accidents were studied. HYPERMESH software was used to do the finite element modelling of the frontal structure and cab of a production truck. The swing hammer impact simulation was conducted by using LS-DYNA software and the results were compared with the test results to validate the model. A new supporting structure for the cab to improve the safety of the passenger in cab was proposed. Meanwhile, an extendable and retractable longitudinal beam energy absorbing structure was also studied by using the finite element model. The simulation results show that these structures can obviously improve the frontal crash safety of the commercial vehicle.
Technical Paper

Structural Improvement of the S-beam of a Production SUV

2010-04-12
2010-01-1005
The S-beam of sports utility vehicles (SUV's) plays a key role in their frontal crashworthiness performance. To study the deformation patterns of the S-beam, a finite element model of a production SUV was developed and validated. Both experimental and simulation results show that large downward and inward deformation occurred at the S-beam in frontal crash. In order to control the deformation of the S-beam, two structural improvement methods were proposed. Computational simulation and tests were conducted to study their effectiveness. Results show that both of these improved methods can control the deformation of the S-beam effectively. The second design was then adapted to manufacture two SUV's for frontal and 40% offset frontal crashes. Experiments showed that the new S-beam design resulted in improvement in structural performance in full frontal crash as well as 40% offset crash modes.
Technical Paper

Frontal Crash Protection Performance of Integrated Child Safety Seat

2013-04-08
2013-01-1160
Child Restraint Systems (CRS), when used properly, can effectively avoid or reduce injury for children in motor vehicle crashes. To deal with the problems of the high rate of misuse of the CRS and submarining in frontal crashes when child occupants using traditional vehicle seat belts, a novel integrated child safety seat (ICSS) with a four-point seat belt and a ring-shaped lap belt was developed in this study. It is easy to operate and has lower rate of misuse. To study the protection performance of the newly developed ICSS in frontal crashes, a sled test and a series of simulations were conducted. The frontal impact sled test was conducted according to the European regulation ECE R44, which includes a Q6 anthropomorphic test device (ATD) and the impact velocity is 50 km/h. The simulation model included the ICSS model and the Q6 ATD model was developed in the MADYMO software, and the simulation model was validated by the sled test.
Technical Paper

Experimental Validation of Pediatric Thorax Finite Element Model under Dynamic Loading Condition and Analysis of Injury

2013-04-08
2013-01-0456
Previously, a 10-year-old (YO) pediatric thorax finite element model (FEM) was developed and verified against child chest stiffness data measured from clinical cardiopulmonary resuscitation (CPR). However, the CPR experiments were performed at relatively low speeds, with a maximum loading rate of 250 mm/s. Studies showed that the biomechanical responses of human thorax exhibited rate sensitive characteristics. As such, the studies of dynamic responses of the pediatric thorax FEM are needed. Experimental pediatric cadaver data in frontal pendulum impacts and diagonal belt dynamic loading tests were used for dynamic validation. Thoracic force-deflection curves between test and simulation were compared. Strains predicted by the FEM and the injuries observed in the cadaver tests were also compared for injury assessment and analysis. This study helped to further improve the 10 YO pediatric thorax FEM.
Technical Paper

Calibration and Stitching Methods of Around View Monitor System of Articulated Multi-Carriage Road Vehicle for Intelligent Transportation

2019-04-02
2019-01-0873
The around view monitor (AVM) system for the long-body road vehicle with multiple articulated carriages usually suffers from the incomplete distortion rectification of fisheye cameras and the irregular image stitching area caused by the change of relative position of the cameras on different carriages while the vehicle is in motion. In response to these problems, a set of calibration and stitching methods of AVM are proposed. First, a radial-distortion-based rectification method is adopted and improved. This method establishes two lost functions and solves the model parameters with the two-step optimization method. Then, AVM system calibration is conducted, and the perspective transformation matrix is calculated. After that, a static basic look-up table is generated based on the distortion rectification model and perspective transformation matrix.
X