Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Rate of Heat Release Prediction for Direct Injection Diesel Engines Based on Purely Mixing Controlled Combustion

1999-03-01
1999-01-0186
The subject of this paper is the discussion of a non-dimensional combustion model that relies on the concept of mixing controlled combustion (MCC Heat Release Rate) avoiding the detailed description of the individual mixture formation and fuel oxidation processes. For diffusion combustion in today's direct injection diesel engines it can be shown that the rate of heat release (ROHR) is controlled mainly by two items, i.e. the instantaneous fuel mass present in the cylinder charge and the local density of turbulent kinetic energy. Both items can be derived from the injection process, the instantaneous fuel mass being the difference of fuel injected minus fuel burnt and the turbulent kinetic energy being produced mainly by the momentum of the fuel sprays. Following this strategy, the injection process is now understood as the most important controlling factor for the heat release rate.
Technical Paper

Advanced Heat Transfer Model for CI Engines

2005-04-11
2005-01-0695
A realistic simulation of the wall heat transfer is an imperative condition for the accurate analysis and simulation of the working process of IC engines. Due to its simplicity in application, zero-dimensional wall heat transfer models dominate engine cycle simulation in practice. However, experience shows that existing zero-dimensional models for wall heat transfer do not yield satisfactory results in certain applications. This is mainly due to a lack of consideration of the actual flow field in the cylinder. In this paper a quasi-dimensional heat transfer model, which is based on a detailed description of the turbulent flow field in the combustion chamber, is described. The model presents a consistent approach for the high pressure as well as the low pressure part of the cycle. The results of the heat transfer model are compared with results from the correlation by Woschni/Huber and with experimental results from various DI Diesel engines.
X