Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

High-Speed Imaging of Early Flame Growth in Spark-Ignited Engines Using Different Imaging Systems via Endoscopic and Full Optical Access

2016-04-05
2016-01-0644
This work investigates the image quality achievable with a large-aperture endoscope system and high-speed cameras in terms of detecting the premixed flame boundary in spark-ignited engines by chemiluminescence imaging. The study is an extension of our previous work on endoscopic flame imaging [SAE 2014-01-1178]. In the present work, two different high-speed camera systems were used together with the endoscope system in two production engines to quantify the time-resolved flame propagation. The systems were cinematography with a CMOS-camera, both with and without an intensifier, the latter variation being used in a four-cylinder automotive engine as well as in a single-cylinder motorcycle engine. An algorithm with automatic dynamic thresholding was developed to detect the line-of-sight projected flame boundary despite artifacts caused by the spark and the large dynamic range in image brightness across each time series.
Journal Article

In-Cylinder LIF Imaging, IR-Absorption Point Measurements, and a CFD Simulation to Evaluate Mixture Formation in a CNG-Fueled Engine

2018-04-03
2018-01-0633
Two optical techniques were developed and combined with a CFD simulation to obtain spatio-temporally resolved information on air/fuel mixing in the cylinder of a methane-fueled, fired, optically accessible engine. Laser-induced fluorescence (LIF) of anisole (methoxybenzene), vaporized in trace amounts into the gaseous fuel upstream of the injector, was captured by a two-camera system, providing one instantaneous image of the air/fuel ratio per cycle. Broadband infrared (IR) absorption by the methane fuel itself was measured in a small probe volume via a spark-plug integrated sensor, yielding time-resolved quasi-point information at kHz-rates. The simulation was based on the Reynolds-averaged Navier-Stokes (RANS) approach with the two-equation k-epsilon turbulence model in a finite volume discretization scheme and included the port-fuel injection event. Commercial CFD software was used to perform engine simulations close to the experimental conditions.
Technical Paper

LES of Flow Processes in an SI Engine Using Two Approaches: OpenFoam and PsiPhi

2014-04-01
2014-01-1121
In this study two different simulation approaches to large eddy simulation of spark-ignition engines are compared. Additionally, some of the simulation results are compared to experimentally obtained in-cylinder velocity measurements. The first approach applies unstructured grids with an automated meshing procedure, using OpenFoam and Lib-ICE with a mapping approach. The second approach applies the efficient in-house code PsiPhi on equidistant, Cartesian grids, representing walls by immersed boundaries, where the moving piston and valves are described as topologically connected groups of Lagrangian particles. In the experiments, two-dimensional two-component particle image velocimetry is applied in the central tumble plane of the cylinder of an optically accessible engine. Good agreement between numerical results and experiment are obtained by both approaches.
Technical Paper

Imaging of Fuel-Film Evaporation and Combustion in a Direct-Injection Model Experiment

2019-04-02
2019-01-0293
Late-evaporating liquid fuel films within the combustion chamber are considered a major source of soot in gasoline direct-injection engines. In this study a direct-injection model experiment was developed to visualize and investigate the evaporation of fuel films and their contribution to soot formation with different diagnostic techniques. A mixture of isooctane (surrogate fuel) and toluene (fluorescent tracer) is injected by a multi-hole injector into a wind tunnel with an optically accessible test section. Air flows continuously at low speed and ambient pressure through the test section. Some of the liquid fuel impinges on the quartz-glass windows and forms fuel films. Combustion is initiated by a pair of electrodes within the fuel/air-mixture. The turbulent flame front propagates through the chamber and ignites pool fires near the fuel films, leading to locally sooting combustion.
Technical Paper

A Study of ECN ‘Spray B’ in a Light-Duty Optically Accessible Diesel Engine Based on High-Speed Imaging with LED Retro-Reflection

2019-04-02
2019-01-0550
The Diesel-type three-hole Spray B (injector 211201) of the Engine Combustion Network (ECN) was used in a single-cylinder light-duty optically-accessible Diesel engine. A simple optical method was developed to quasi-simultaneously image both liquid and gas phase of the fuel spray as well as combustion at kHz rates by retro-reflection of pulsed LED light from the fire deck. From the images, liquid penetration length, fuel vapor penetration, spray dispersion angle, ignition delay, flame luminosity, and ignition location were determined. Wide-field imaging allowed for studying the nozzle hole-to-hole variation. In addition to a variation of ambient temperature and density to achieve the standard ECN condition, a variation of fuel rail pressure and swirl ratio was also investigated, under both non-reacting and reacting conditions. The results show physically reasonable variations with different operating conditions.
Journal Article

Endoscopic Imaging of Early Flame Propagation in a Near-Production Engine

2014-04-01
2014-01-1178
UV-chemiluminescence from the excited hydroxyl-radical (OH*) has been used as a marker for the high-temperature reacting zone in spark-ignited engines for quite some time. In research engines with large optical access, sensitive camera systems make it possible to obtain images of the flame that can be used for, e.g., determining the flame-front's propagation speed [Aleiferis et al., Combust. Flame 136 (2004) 283-302]. However, on one hand such optical engines are limited in their speed and load range, on the other, typical UV endoscopes make wide-field imaging at low light levels challenging. Here, a large-aperture UV endoscope is used to capture sequences of OH* chemiluminescence during early flame propagation in a nearly unmodified production engine. We compare three imaging systems: phase-locked single-shot imaging, phase-locked double-frame imaging, and “high-speed” cinematography at kHz repetition rates.
Technical Paper

Ignition and Combustion Characteristics of OME3-5 and N-Dodecane: A Comparison Based on CFD Engine Simulations and Optical Experiments

2023-04-11
2023-01-0305
Synthetic fuels derived from renewable power sources, so-called e-fuels, will play a crucial role in achieving climate-neutral future mobility because they can be used in the existing fleets and in hard-to-decarbonize applications. In particular e-fuels that contain oxygen in their chemical structure can also burn more cleanly in terms of soot formation. For compression-ignition engines, polyoxymethylene dimethyl ethers (PODEs or OMEs) are among the most promising candidates for such oxygenated e-fuels. Here, we investigated the characteristics of injection and combustion of OME3-5 mixture compared to n-dodecane, a reference diesel-like fuel. Both single and multi-injection, comprising a short pilot injection, is used. Experiments were performed in a single-cylinder optically accessible Bowditch-type engine, injecting with 1500 bar pressure with a 3-hole injector (Spray B of the Engine Combustion Network).
Journal Article

Optical Investigation of Mixture Formation in a Hydrogen-Fueled Heavy-Duty Engine with Direct-Injection

2023-04-11
2023-01-0240
Mixture formation in a hydrogen-fueled heavy-duty engine with direct injection and a nearly-quiescent top-hat combustion chamber was investigated using laser-induced fluorescence imaging, with 1,4-difluorobenzene serving as a fluorescent tracer seeded into hydrogen. The engine was motored at 1200 rpm, 1.0 bar intake pressure, and 335 K intake temperature. An outward opening medium-pressure hollow-cone injector was operated at two different injection pressures and five different injection timings from early injection during the intake stroke to late injection towards the end of compression stroke. Fuel fumigation upstream of the intake provided a well-mixed reference case for image calibration. This paper presents the evolution of in-cylinder equivalence ratio distribution evaluated during the injection event itself for the cylinder-axis plane and during the compression stroke at different positions of the light sheet within the swirl plane.
X