Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Model-Based Control of Combustion Phasing in an HCCI Engine

2012-04-16
2012-01-1137
Robust control of combustion phasing in Homogenous Charge Compression Ignition (HCCI) engines is a well-recognized challenge limiting the automotive industry for exploiting HCCI benefits in mass production vehicles. Real-time model-based control of combustion phasing is the key to tackle this daunting challenge. In this paper, a new control oriented model is developed for predicting HCCI combustion phasing over a range of engine operation. The model is validated against the experimental data from a single cylinder Ricardo engine. A model-based integral state feedback controller is designed to control HCCI combustion phasing by modulating the ratio of two Primary Reference Fuels (PRFs). The controller's performance is compared with a manually tuned proportional integral controller.
Technical Paper

Numerical Investigation of Flow Field and Combustion in a Dual Fuel Diesel Engine

2010-04-12
2010-01-0480
A newly developed heavy duty diesel engine in dual fuel mode of operation has been studied in detail. The main fuel would be natural gas presented by Methane and diesel oil as pilot injection. The importance and effects of mixture preparation and formation through ports, valves and in cylinder flow field with different swirl ratio and tumble on diesel combustion phenomena is an accepted feature which has been studied using a developed CFD model together with a KIVA3-V2 code. This analysis is capable to investigate engine geometry, valves lift, and valves timing turbo charging, and its effects on dynamic flow field with variable dual fuel ratio on power and emission levels output. This complete open cycle study of a dual fuel engine has been carried out originally and for the first time. The validation is carried out using developed codes for same engine with experimental data available from test rig later on.
X