Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Gasoline Engine Connecting Rod Buckling Load and Post Buckling Deformation Prediction through CAE for Lightweight Design

2016-04-05
2016-01-1343
Super-knocking event generates high pressure pulse in gasoline engine, the predominant failure mode in these cases is connecting rod buckling. Two major factors which affects the bucking strength of connecting rod are shank dimensions and load offset in crankpin axis. There are standard methods available for calculating buckling strength of connecting rod such as Johnson’s buckling equation, Eigenvalue method, Merchant-Rankine formula etc. Each of these methods have pros and cons. But no method caters to all the considerations accurately such as section variation in shank, load offsets, local material plasticity and geometric nonlinearity as in bending preceded by buckling. In present paper, a new methodology is developed using FEA to evaluate the connecting rod buckling strength and post buckling deformation. Comparison with eigenvalue method and theoretical results are presented. Study related to buckling load sensitivity for load offset is also presented.
Technical Paper

Virtual Drivetrain Simulation Using Adams View and Correlation with Test

2016-04-05
2016-01-1361
Reducing the vibrations in the drivetrain is one of the prime necessities in today’s automobiles from NVH and strength perspectives. The virtual drivetrain simulation methodology to predict the driveline induced excitations transmitted to vehicle is developed for three cylinder engine using Adams View. The obtained mount forces from Adams dynamic simulation is correlated with the measured test data at vehicle level and the good correlation is observed. Paper discusses on the methodology of virtual drivetrain using Adams view and the correlation of measured dynamic mount forces with simulation results. This correlation gives the confidence that the developed simulation methodology can be used to get the mount forces of different orders from drivetrain.
X