Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Effects of the Specific Material Selection on the Structural Behaviour of the Piston-Liner Coupling of a High Performance Engine

2021-09-21
2021-01-1235
The materials commonly employed in the automotive industry are various and depend on the specific application field. For what concern the internal combustion engines the choice is guided by the thermomechanical performance required, technological constraints and production costs. Actually, for high-performance engines, steel and aluminium are the most common materials selected for the piston and the cylinder liner manufacturing. This study analyses the effect of possible material choice on the interaction between piston and cylinder liner, via Finite Element analyses. A motorcycle engine is investigated considering two possible pistons: one (standard) made of aluminium and one made of steel. Similarly, two possible cylinder liners are considered, the original one made of aluminium and a different version made of steel obtained by simply thinning the aluminium component in order to obtain two structurally equivalent components.
Technical Paper

Investigation on the Dynamic Behaviour of a Torque Transmission Chain for an Innovative Hybrid Power Unit Architecture

2020-06-30
2020-37-0013
In this contribution, the mechanical torque transmission between the Electric Motor (EM) and the Internal Combustion Engine (ICE) of a P0 architecture hybrid power unit is analysed. In particular, the system is made up of a brand new, single-cylinder 480cc engine developed on the basis of the Ducati 959 Panigale V90 2-cylinders engine. The thermal engine is assisted by a custom electric motor (30 kW), powered by a Li-Ion battery pack. The Ducati 959 Panigale engine is chosen because of its high power-to-weight ratio, and for taking advantage of its V90 2-cylinders layout. In fact, the proposed hybridization process considers to remove the vertical engine head and to replace it by the electric motor directly engaged to the crankshaft using the original valvetrain transmission chain, thus achieving a very compact package. This solution could be suitable for many V-type engines and it aims to obtain a small hybrid power unit for possible motorcycle/small vehicle applications.
Journal Article

Investigation of the Influence of Different Asperity Contact Models on the Elastohydrodynamic Analysis of a Conrod Small-End/Piston Pin Coupling

2018-04-03
2018-01-0836
Bearings represent one of the main causes of friction losses in internal combustion engines, and their lubrication performance has a crucial influence on the operating condition of the engine. In particular, the conrod small-end bearing is one of the most critical engine parts from a tribological point of view since limited contact surfaces have to support high inertial and combustion forces. In this contribution an analysis is performed of the tribological behavior of the lubricated contact between the piston pin and the conrod small-end of a high performance motorbike engine. A mass-conserving algorithm is employed to solve the Reynolds equation based on a complementarity formulation of the cavitation problem. The analysis of the asperity contact problem is addressed in detail. A comparison between two different approaches is presented, the former based on the standard Greenwood/Tripp theory and the latter based on a complementarity formulation of the asperity contact problem.
Journal Article

Design of an Additive Manufactured Steel Piston for a High Performance Engine: Developing of a Numerical Methodology Based on Topology Optimization Techniques

2018-04-03
2018-01-1385
Modern high performance engines are usually characterized by high power densities, which lead to high mechanical and thermal loadings acting on engine components. In this scenario, aluminum may not represent the best choice for piston manufacturing and steel may be considered as a valid alternative. In this article, a methodology involving optimization techniques is presented for the design of an internal combustion engine piston. In particular, a design strategy is preliminary investigated aiming at replacing the standard aluminum piston, usually manufactured by forging or casting, with an alternative one made of steel and manufactured via an Additive Manufacturing process. Three different loading conditions are employed for the topology optimizations setup. Optimization results are then interpreted and the various structural features of the steel piston are designed starting from the density distribution contour plots.
Technical Paper

A New Decoupled CFD and FEM Methodology for the Fatigue Strength Assessment of an Engine Head

2008-04-14
2008-01-0972
A 2200 cc engine head for marine applications has been analysed and optimized by means of decoupled CFD and FEM simulations in order to assess the fatigue strength of the component. The fluid distribution within the cooling jacket was extensively analysed and improved in previous works, in order to enhance the performance of the coolant galleries. A simplified methodology was then proposed in order to estimate the thermo-mechanical behaviour of the head under actual engine operation [1, 2]. As a consequence of the many complex phenomena involved, an improved approach is presented in this paper, capable of a better characterization of the fatigue strength of the engine head under both high-cycle and low-cycle fatigue loadings. The improved methodology is once again based on a decoupled CFD and FEM analysis, with relevant improvements added to both simulation realms.
Technical Paper

Multiphase CFD-CHT Analysis and Optimization of the Cooling Jacket in a V6 Diesel Engine

2010-10-25
2010-01-2096
The paper presents a numerical activity directed at the analysis and optimization of internal combustion engine water cooling jackets, with particular emphasis on the fatigue-strength assessment and improvement. In the paper, full 3D-CFD and FEM analyses of conjugate heat transfer and load cycle under actual engine operation of a single bank of a current production V6 turbocharged diesel engine are reported. A highly detailed model of the engine, made up of both the coolant galleries and the surrounding metal components, i.e., the engine head, the engine block, the gasket, the valve guides and valve seats, is used on both sides of the simulation process to accurately capture the influence of the cooling system layout under thermal and load conditions as close as possible to actual engine operations.
Technical Paper

A Simplified Methodology for the Analysis of the Cylinder Liner Bore Distortion: Finite Element Analyses and Experimental Validations

2019-09-09
2019-24-0164
Advances in modern engines are becoming more and more challenging. The intense increase of thermal and mechanical loads, as a consequence of a higher power density, requires the improvement of the main couplings encountered between moving engine components. In this scenario, the cylinder liner/piston coupling plays a crucial role in terms of engine performance and durability, especially with regards to pollution emission and friction reduction. In this paper a numerical methodology is proposed, which aims at simplifying the Finite Element evaluation of the cylinder liner bore distortion in an eight-cylinder V-type four stroke turbocharged engine. Finite Element simulations are performed to obtain a virtual approval of the component geometry, in advance with respect to the component manufacturing. In particular, preliminary Finite Element analyses are developed which accurately follow the experimental procedure, where a single engine bank is coupled with a simplified test engine head.
Journal Article

Design of a Hybrid Power Unit for Formula SAE Application: Packaging Optimization and Thermomechanical Design of the Electric Motor Case

2019-09-09
2019-24-0197
This paper presents the development of a parallel hybrid power unit for Formula SAE application. In particular, the system is made up of a brand new, single-cylinder 480 cc internal combustion engine developed on the basis of the Ducati “959 Superquadro” V90 2-cylinders engine. The thermal engine is assisted by a custom electric motor (30 kW), powered by a Li-Ion battery pack. The performance of the ICE has been optimized through CFD-1D simulation (a review of this activity is reported in a parallel paper). The main design goal is to get the maximum amount of mechanical energy from the fuel, considering the car typical usage: racing on a windy track. The Ducati “959 Superquadro” engine is chosen because of its high power-to-weight ratio, as well as for its V90 2-cylinder layout.
Journal Article

Experimental Measurement of Roughness Data and Evaluation of Greenwood/Tripp Parameters for the Elastohydrodynamic Analysis of a Conrod Small-End/Piston Pin Coupling

2019-09-09
2019-24-0081
For the investigation of the tribological behavior of lubricated contacts, the choice and the calibration of the adopted asperity contact model is fundamental, in order to properly mimic the mixed lubrication conditions. The Greenwood/Tripp model is extensively adopted by the commercial software commonly employed to simulate lubricated contacts. This model, based on a statistic evaluation of the number of asperities in contact and on the Hertzian contact theory, has the advantage of introducing a simple relationship between oil film thickness and asperity contact pressure, considerably reducing the simulation time. However, in order to calibrate the model, some non-standard roughness parameters are required, that are not available from commercial roughness measuring equipment. Standard values, based on some limited experiences, are typically used, and a limited literature can be found focusing on how to evaluate them, thus reducing the predictivity of the model.
Technical Paper

Investigation via Finite Element Analysis of the Influence of Boiling on the Thermo-Structural Behavior of the Engine Head of a High-Performance Combustion Engine

2023-08-28
2023-24-0184
This paper presents a numerical methodology for studying the effect of boiling on the structural behavior of high-performance internal combustion engines. Boiling occurs when the portion of engine coolant in contact with hot walls reaches high temperatures and vapor bubbles form. While incipient vaporization of the coolant can promote additional cooling, excessive vapor can act as an insulator and lead to potentially dangerous high temperatures in the engine. Boiling is typically analyzed using Computational Fluid Dynamic Analyses, which are usually computationally intensive. In this study, the authors propose a Finite Element methodology that combines semi-empirical formulations, less demanding than Computational Fluid Dynamic models, with thermal Finite Element simulations to detect and manage boiling. Two different empirical formulations for boiling were employed, proposed by Garro and Chen respectively, and their results were compared.
X