Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Effects of the Specific Material Selection on the Structural Behaviour of the Piston-Liner Coupling of a High Performance Engine

2021-09-21
2021-01-1235
The materials commonly employed in the automotive industry are various and depend on the specific application field. For what concern the internal combustion engines the choice is guided by the thermomechanical performance required, technological constraints and production costs. Actually, for high-performance engines, steel and aluminium are the most common materials selected for the piston and the cylinder liner manufacturing. This study analyses the effect of possible material choice on the interaction between piston and cylinder liner, via Finite Element analyses. A motorcycle engine is investigated considering two possible pistons: one (standard) made of aluminium and one made of steel. Similarly, two possible cylinder liners are considered, the original one made of aluminium and a different version made of steel obtained by simply thinning the aluminium component in order to obtain two structurally equivalent components.
Journal Article

Investigation of the Influence of Different Asperity Contact Models on the Elastohydrodynamic Analysis of a Conrod Small-End/Piston Pin Coupling

2018-04-03
2018-01-0836
Bearings represent one of the main causes of friction losses in internal combustion engines, and their lubrication performance has a crucial influence on the operating condition of the engine. In particular, the conrod small-end bearing is one of the most critical engine parts from a tribological point of view since limited contact surfaces have to support high inertial and combustion forces. In this contribution an analysis is performed of the tribological behavior of the lubricated contact between the piston pin and the conrod small-end of a high performance motorbike engine. A mass-conserving algorithm is employed to solve the Reynolds equation based on a complementarity formulation of the cavitation problem. The analysis of the asperity contact problem is addressed in detail. A comparison between two different approaches is presented, the former based on the standard Greenwood/Tripp theory and the latter based on a complementarity formulation of the asperity contact problem.
Journal Article

Design of an Additive Manufactured Steel Piston for a High Performance Engine: Developing of a Numerical Methodology Based on Topology Optimization Techniques

2018-04-03
2018-01-1385
Modern high performance engines are usually characterized by high power densities, which lead to high mechanical and thermal loadings acting on engine components. In this scenario, aluminum may not represent the best choice for piston manufacturing and steel may be considered as a valid alternative. In this article, a methodology involving optimization techniques is presented for the design of an internal combustion engine piston. In particular, a design strategy is preliminary investigated aiming at replacing the standard aluminum piston, usually manufactured by forging or casting, with an alternative one made of steel and manufactured via an Additive Manufacturing process. Three different loading conditions are employed for the topology optimizations setup. Optimization results are then interpreted and the various structural features of the steel piston are designed starting from the density distribution contour plots.
Journal Article

Experimental Measurement of Roughness Data and Evaluation of Greenwood/Tripp Parameters for the Elastohydrodynamic Analysis of a Conrod Small-End/Piston Pin Coupling

2019-09-09
2019-24-0081
For the investigation of the tribological behavior of lubricated contacts, the choice and the calibration of the adopted asperity contact model is fundamental, in order to properly mimic the mixed lubrication conditions. The Greenwood/Tripp model is extensively adopted by the commercial software commonly employed to simulate lubricated contacts. This model, based on a statistic evaluation of the number of asperities in contact and on the Hertzian contact theory, has the advantage of introducing a simple relationship between oil film thickness and asperity contact pressure, considerably reducing the simulation time. However, in order to calibrate the model, some non-standard roughness parameters are required, that are not available from commercial roughness measuring equipment. Standard values, based on some limited experiences, are typically used, and a limited literature can be found focusing on how to evaluate them, thus reducing the predictivity of the model.
X