Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Investigation of the Influence of Different Asperity Contact Models on the Elastohydrodynamic Analysis of a Conrod Small-End/Piston Pin Coupling

2018-04-03
2018-01-0836
Bearings represent one of the main causes of friction losses in internal combustion engines, and their lubrication performance has a crucial influence on the operating condition of the engine. In particular, the conrod small-end bearing is one of the most critical engine parts from a tribological point of view since limited contact surfaces have to support high inertial and combustion forces. In this contribution an analysis is performed of the tribological behavior of the lubricated contact between the piston pin and the conrod small-end of a high performance motorbike engine. A mass-conserving algorithm is employed to solve the Reynolds equation based on a complementarity formulation of the cavitation problem. The analysis of the asperity contact problem is addressed in detail. A comparison between two different approaches is presented, the former based on the standard Greenwood/Tripp theory and the latter based on a complementarity formulation of the asperity contact problem.
Journal Article

Design of an Additive Manufactured Steel Piston for a High Performance Engine: Developing of a Numerical Methodology Based on Topology Optimization Techniques

2018-04-03
2018-01-1385
Modern high performance engines are usually characterized by high power densities, which lead to high mechanical and thermal loadings acting on engine components. In this scenario, aluminum may not represent the best choice for piston manufacturing and steel may be considered as a valid alternative. In this article, a methodology involving optimization techniques is presented for the design of an internal combustion engine piston. In particular, a design strategy is preliminary investigated aiming at replacing the standard aluminum piston, usually manufactured by forging or casting, with an alternative one made of steel and manufactured via an Additive Manufacturing process. Three different loading conditions are employed for the topology optimizations setup. Optimization results are then interpreted and the various structural features of the steel piston are designed starting from the density distribution contour plots.
Technical Paper

A New Decoupled CFD and FEM Methodology for the Fatigue Strength Assessment of an Engine Head

2008-04-14
2008-01-0972
A 2200 cc engine head for marine applications has been analysed and optimized by means of decoupled CFD and FEM simulations in order to assess the fatigue strength of the component. The fluid distribution within the cooling jacket was extensively analysed and improved in previous works, in order to enhance the performance of the coolant galleries. A simplified methodology was then proposed in order to estimate the thermo-mechanical behaviour of the head under actual engine operation [1, 2]. As a consequence of the many complex phenomena involved, an improved approach is presented in this paper, capable of a better characterization of the fatigue strength of the engine head under both high-cycle and low-cycle fatigue loadings. The improved methodology is once again based on a decoupled CFD and FEM analysis, with relevant improvements added to both simulation realms.
Technical Paper

Multiphase CFD-CHT Analysis and Optimization of the Cooling Jacket in a V6 Diesel Engine

2010-10-25
2010-01-2096
The paper presents a numerical activity directed at the analysis and optimization of internal combustion engine water cooling jackets, with particular emphasis on the fatigue-strength assessment and improvement. In the paper, full 3D-CFD and FEM analyses of conjugate heat transfer and load cycle under actual engine operation of a single bank of a current production V6 turbocharged diesel engine are reported. A highly detailed model of the engine, made up of both the coolant galleries and the surrounding metal components, i.e., the engine head, the engine block, the gasket, the valve guides and valve seats, is used on both sides of the simulation process to accurately capture the influence of the cooling system layout under thermal and load conditions as close as possible to actual engine operations.
X