Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

The Use of a Partial Flow Filter to Assist the Diesel Particulate Filter and Reduce Active Regeneration Events

2014-10-13
2014-01-2806
This study investigates the potential of using a partial flow filter (PFF) to assist a wall flow diesel particulate filter (DPF) and reduce the need for active regeneration phases that increase engine fuel consumption. First, the filtration efficiency of the PFF was studied at several engine operating conditions, varying the filter space velocity (SV), through modification of the exhaust gas flow rate, and engine-out particulate matter (PM) concentration. The effects of these parameters were studied for the filtration of different particle size ranges (10-30 nm, 30-200 nm and 200-400 nm). For the various engine operating conditions, the PFF showed filtration efficiency over 25% in terms of PM number and mass. The PFF filtration behaviour was also investigated at idle engine operation producing a high concentration of nuclei particulates for which the filter was able to maintain 60% filtration efficiency.
Journal Article

Reformate Exhaust Gas Recirculation (REGR) Effect on Particulate Matter (PM), Soot Oxidation and Three Way Catalyst (TWC) Performance in Gasoline Direct Injection (GDI) Engines

2015-09-01
2015-01-2019
Gasoline direct injection (GDI) engines have become very attractive in transportation due to several benefits over preceding engine technologies. However, GDI engines are associated with higher levels of particulate matter (PM) emissions, which is a major concern for human health. The aim of this work is to broaden the understanding of the effect of hydrogen combustion and the influence of the three way catalytic converter (TWC) on PM emission characteristics. The presence of hydrogen in GDI engines has been reported to reduce fuel consumption and improve the combustion process, making it possible to induce higher rates of EGR. A prototype exhaust fuel reformer build for on-board vehicle hydrogen-rich gas (reformate) production has been integrated within the engine operation and studied in this work.
Technical Paper

A Study of Quantitative Impact on Emissions of High Proportion RME-Based Biodiesel Blends

2007-01-23
2007-01-0072
Previous work of the authors' group has shown that biodiesel fuels as a replacement for conventional diesel fuel in engine combustion can reduce PM level dramatically while lowering some other regulated emissions as well. It has shown that these fuels have the potential to increase the overall engine performance due to their lower sulphur and/or aromatics content compared with standard diesel fuels. This paper presents a study on a single cylinder naturally aspirated direct injection (DI) diesel engine, equipped with a pump-line-nozzle injection system, operating with varied biodiesel fuel blends (0%, 25%, and 50% of RME by volume) with ultra low sulphur diesel fuel (ULSD). The detailed analysis of the measurement data shows that the ignition delay and exhaust emissions are affected by the proportion of biodiesel due to the effect of different physical and chemical properties of the two fuels.
Technical Paper

Particulate Emissions from a Common Rail Fuel Injection Diesel Engine with RME-based Biodiesel Blended Fuelling Using Thermo-gravimetric Analysis

2008-04-14
2008-01-0074
Increasing biodiesel content in mineral diesel is being promoted considerably for road transportation in Europe. With positive benefits in terms of net CO2 emissions, biofuels with compatible properties to those of conventional diesel are increasingly being used in combustion engines. In comparison to standard diesel fuel, the near zero sulphur content and low levels of aromatic compounds in biodiesel fuel can have a profound effect not only on combustion characteristics but on engine-out emissions as well. This paper presents analysis of particulate matter (PM) emissions from a turbo-charged, common rail direct injection (DI) V6 Jaguar engine operating with an RME (rapeseed methyl ester) biodiesel blended with ultra low sulphur diesel (ULSD) fuel (B30 - 30% of RME by volume). Three different engine load and speed conditions were selected for the test and no modifications were made to the engine hardware or engine management system (EMS) calibration.
Technical Paper

Performance, Emissions and Exhaust-Gas Reforming of an Emulsified Fuel: A Comparative Study with Conventional Diesel Fuel

2009-06-15
2009-01-1809
The fuel reforming technology has been extensively investigated as a way to produce hydrogen on-board a vehicle that can be utilized in internal combustion engines, fuel cells and aftertreatment technologies. Maximization of H2 production in the reforming process can be achieved when there is optimized water (steam) addition for the different reforming temperatures. A way to increase the already available water quantity on-board a vehicle (i.e. exhaust gas water content) is by using emulsified fuel (e.g. water-diesel blend). This study presents the effect of an emulsified diesel fuel (a blend of water and diesel fuel with an organic surfactant to make the mixture stable) on combustion in conjunction with exhaust gas assisted fuel reforming on a compression ignition engine. No engine modification was required to carry out these tests. The emulsified diesel fuel consisted of about 80% (mass basis) of conventional ultra low sulphur diesel (ULSD) fuel and fixed water content.
Technical Paper

Engine Performance and Emissions from Dual Fuelled Engine with In-Cylinder Injected Diesel Fuels and In-Port Injected Bioethanol

2009-06-15
2009-01-1853
Biofuels development and specification are currently driven by the engine (mainly gasoline- and diesel-type) technology, existing fossil fuel specification and availability of feedstock. The ability to use biofuels with conventional fuels without jeopardising the standard fuel specifications is a very effective means for the implementation of these fuels. In this work the effect of dual fuelling with in-cylinder injected ULSD fuel or synthetic second generation biofuels (a Gas-To-Liquid GTL fuel as a surrogate of these biofuels as its composition, specifications and production process are very similar to second generation biofuels) and with inlet port injected bioethanol on the engine performance and emissions were investigated. The introduction of anhydrous bioethanol improved the NOx and smoke emissions, but increased total hydrocarbons and carbon monoxide.
Technical Paper

Effect of Fuel Temperature on Performance and Emissions of a Common Rail Diesel Engine Operating with Rapeseed Methyl Ester (RME)

2009-06-15
2009-01-1896
The paper presents analysis of performance and emission characteristics of a common rail diesel engine operating with RME, with and without EGR. In both cases, the RME fuel was pre-heated in a heat exchanger to control its temperature before being pumped to the common rail. The studied parameters include the in-cylinder pressure history, rate of heat release, mass fraction burned, and exhaust emissions. The results show that when the fuel temperature increases and the engine is operated without EGR, the brake specific fuel consumption (bsfc) decreases, engine efficiency increases and NOx emission slightly decreases. However, when EGR is used while fuel temperature is increased, the bsfc and engine efficiency is independent of fuel temperature while NOx slightly increases.
Technical Paper

Hydrogen Rich Gas Production in a Diesel Partial Oxidation Reactor with HC Speciation

2009-04-20
2009-01-0276
In the present work, the partial oxidation of diesel (US07), rapeseed methyl ester (RME) and low temperature Fischer - Tropsch synthetic diesel (SD), almost 100% paraffinic, was investigated for the purpose of hydrogen and intermediate hydrocarbon species production over a prototype reforming catalyst, for the potential use in hydrocarbon selective catalytic reduction (HC-SCR) of nitrogen oxide (NOx) emissions from diesel engines. The presence of small amounts of hydrogen can substantially improve the effectiveness of hydrocarbons in the selective reduction of NOx over lean NOx catalysts, particularly at low temperatures (150-350°C). In this study, the partial oxidation reactor was operating at the same input power (kW), based on the calorific values of the fed fuel. Hydrogen production was as high as 19%, from the partial oxidation of SD fuel, and dropped to 17% and 14% for RME and US07 diesel, respectively.
Technical Paper

A 1D Analysis into the Effect of Variable Valve Timing on HCCI Engine Parameters

2008-10-06
2008-01-2459
The effects of variable intake-valve-timing on the gas exchange process and performance of a 4-valve direct-injection HCCI engine were computationally investigated using a 1D gas dynamics engine cycle simulation code. A non-typical strategy to actuate the pair of intake valves was examined; whereby each valve was assumed to be actuated independently at different timing. Using such an intake valves strategy, the obtained results showed a considerable improvement of the engine parameters such as load and charging efficiency as compared with the typical identical intake valve pair timings case. Additional benefits of minimizing pumping losses and improving the fuel economy were demonstrated with the use of the non-simultaneous actuation of the intake valve pair having the opening timing of the early intake valve coupled with a symmetric degree of crank angle for the timing of exhaust valve closing.
Technical Paper

Diesel Engine Performance and Emissions when First Generation Meets Next Generation Biodiesel

2009-06-15
2009-01-1935
Limits on the total future potential of biodiesel fuel due to the availability of raw materials mean that ambitious 20% fuel replacement targets will need to be met by the use of both first and next generation biodiesel fuels. The use of higher percentage biodiesel blends requires engine recalibration, as it affects engine performance, combustion patterns and emissions. Previous work has shown that the combustion of 50:50 blends of biodiesel fuels (first generation RME and next generation synthetic fuel) can give diesel fuel-like performance (i.e. in-cylinder pressure, fuel injection and heat release patterns). This means engine recalibration can be avoided, plus a reduction in all the regulated emissions. Using a 30% biodiesel blend (with different first and next generation proportions) mixed with Diesel may be a more realistic future fuel.
Technical Paper

GDI Engine Performance and Emissions with Reformed Exhaust Gas Recirculation (REGR)

2013-04-08
2013-01-0537
Exhaust Gas Fuel Reforming has potential to be used for on-board generation of hydrogen rich gas, reformate, and to act as an energy recovery system allowing the capture of waste exhaust heat. High exhaust gas temperature drives endothermic reforming reactions that convert hydrocarbon fuel into gaseous fuel when combined with exhaust gas over a catalyst - the result is an increase in overall fuel energy that is proportional to waste energy capture. The paper demonstrates how the combustion of reformate in a direct injection gasoline (GDI) engine via Reformed Exhaust Gas Recirculation (REGR) can be beneficial to engine performance and emissions. Bottled reformate was inducted into a single cylinder GDI engine at a range of engine loads to compare REGR to conventional EGR. The reformate composition was selected to approximate reformate produced by exhaust gas fuel reforming at typical gasoline engine exhaust temperatures.
Technical Paper

Exhaust Gas Fuel Reforming for Diesel Engines - A Way to Reduce Smoke and NOX Emissions Simultaneously

2004-06-08
2004-01-1844
This paper describes the results of an experimental investigation of the exhaust gas assisted fuel reforming process as a means of achieving reduction of both smoke and NOx diesel engine emissions. Using a reforming mini-reactor with exhaust gas from a single-cylinder DI diesel engine, diesel fuel was reformed and a hydrogen-rich gas was produced. The effects of the reforming process on the engine operation were studied by adding simulated reformer product gas to the engine inlet. In this way, the engine was operated as if a reformer would have been incorporated in the exhaust gas recirculation system (EGR) system providing the engine with ‘reformed EGR’ (REGR). Lower levels of REGR resulted in simultaneous reduction of smoke and NOx while increased REGR reduced smoke further but tended to increase NOx.
Technical Paper

Combustion Characteristics and Exhaust Gas Emissions of a Diesel Engine Supplied with Reformed EGR

2005-05-11
2005-01-2087
The Reformed EGR (REGR) technique involves the injection of hydrocarbon fuel (e.g., diesel) into a catalytic reformer fitted into the engine EGR system, so that the produced hydrogen containing gas mixture is fed back to the engine as REGR. Thus, in effect the engine operates in a similar way to a dual fuelled engine with standard EGR. Depending on the reforming conditions, the composition and the calorific value of the REGR may vary and this affects the engine performance and emissions. In the present study, simulated REGR with different H2/CO ratios has been examined. The combustion of REGR with maximum H2 and minimum CO contents resulted in the highest reduction of NOx emissions. This case simulated the reformer operation where the CO is fully converted to H2 by promoting the exothermic water gas shift reaction (WGSR). The highest reductions of both smoke and fuel consumption were achieved in the case of simulating the reformer operation where the CO is not fully converted to H2.
Technical Paper

Improving Ethanol-Diesel Blend Through the Use of Hydroxylated Biodiesel

2014-10-13
2014-01-2776
Due to the emission benefits of the oxygen in the fuel molecule, the interest for the use of ethanol as fuel blend components in compression ignition engines has been increased. However the use of fuel blends with high percentage of ethanol can lead to poor fuel blend quality (e.g. fuel miscibility, cetane number, viscosity and lubricity). An approach which can be used to improve these properties is the addition of biodiesel forming ternary blends (ethanol-biodiesel-diesel). The addition of castor oil-derived biodiesel (COME) containing a high proportion of methyl ricinoleate (C18:1 OH) is an attractive approach in order to i) reduce the use of first generation biodiesel derived from edible sources, ii) balance the reduction in viscosity and lubricity of ethanol-diesel blends due to the high viscosity and excellent lubricity of methyl ricinoleate.
Technical Paper

Thermal Performance of Diesel Aftertreatment: Material and Insulation CFD Analysis

2014-10-13
2014-01-2818
Recent developments in diesel engines lead to increased fuel efficiency and reduced exhaust gas temperature. Therefore more energy efficient aftertreatment systems are required to comply with tight emission regulations. In this study, a computational fluid dynamics package was used to investigate the thermal behaviour of a diesel aftertreatment system. A parametric study was carried out to identify the most influential pipework material and insulation characteristics in terms of thermal performance. In the case of the aftertreatment pipework and canning material effect, an array of different potential materials was selected and their effects on the emission conversion efficiency of a Diesel Oxidation Catalyst (DOC) were numerically investigated over a driving cycle. Results indicate that although the pipework material's volumetric heat capacity was decreased by a factor of four, the total emission reduction was only considerable during the cold start.
X