Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Studies on the Impact of 300 MPa Injection Pressure on Engine Performance, Gaseous and Particulate Emissions

2013-04-08
2013-01-0897
An investigation has been carried out to examine the influence of up to 300 MPa injection pressure on engine performance and emissions. Experiments were performed on a 4 cylinder, 4 valve / cylinder, 4.5 liter John Deere diesel engine using the Ricardo Twin Vortex Combustion System (TVCS). The study was conducted by varying the injection pressure, Start of Injection (SOI), Variable Geometry Turbine (VGT) vane position and a wide range of EGR rates covering engine out NOx levels between 0.3 g/kWh to 2.5 g/kWh. A structured Design of Experiment approach was used to set up the experiments, develop empirical models and predict the optimum results for a range of different scenarios. Substantial fuel consumption benefits were found at the lowest NOx levels using 300 MPa injection pressure. At higher NOx levels the impact was nonexistent. In a separate investigation a Cambustion DMS-500 fast particle spectrometer, was used to sample and analyze the exhaust gas.
Journal Article

The Effect of Low Viscosity Oil on the Wear, Friction and Fuel Consumption of a Heavy Duty Truck Engine

2013-04-08
2013-01-0331
This paper describes the results of a series of tests on a heavy-duty truck diesel engine using conventional and low viscosity lubricants. The objectives were to explore the impact of reducing lubricant viscosity on wear, friction and fuel consumption. The radiotracing Thin Layer Activation method was used to make on-line measurements of wear at the cylinder liner, top piston ring, connecting rod small end bush and intake cam lobe. The engine was operated under a wide range of conditions (load, speed and temperature) and with lubricants of several different viscosity grades. Results indicate the relationship between lubricant viscosity and wear at four critical locations. Wear at other locations was assessed by analysis of wear metals and post test inspection. The fuel consumption was then measured on the same engine with the same lubricants. Results indicate the relationship between oil viscosity and fuel consumption under a wide range of operating conditions.
Technical Paper

Emissions Performance of Pure Vegetable Oil in Two European Light Duty Vehicles

2004-06-08
2004-01-1881
This programme involved the testing of two Euro II compliant diesel vehicles over the current European legislated drive cycle. The aim of the programme was to determine and compare the emissions of 100% virgin vegetable oil (VVO100) and a baseline UK marketplace Ultra Low Sulphur (ULSD) diesel fuel. A splash blend of 5% rapeseed methyl ester in ULSD (RME5) was also evaluated. Results of tests on RME5 showed that generally the effects on emissions compared to ULSD were small for regulated and most unregulated emissions. There was some evidence of a PM10 benefit for RME5 fuel. VVO100 showed large increases in HC (up to 250%) and CO emissions in both vehicles, as well as increases in polycyclic aromatic hydrocarbons (PAH), compared to ULSD. Effects on NOx and particulate were vehicle - specific.
Technical Paper

DETR/SMMT/CONCAWE Particulate Research Programme: Light Duty Results

2001-09-24
2001-01-3577
The DETR/SMMT/CONCAWE Particulate Research Programme was designed to investigate the effects of vehicle/engine technology level, fuel specification and various operating conditions on emissions of particle mass, number and size. Results from the heavy duty part of the programme and details of the measuring protocols have already been published. This paper gives the results of the light duty study. This consisted of six vehicles and eight fuels covering gasoline, Diesel and LPG technologies. These six vehicles represented Euro II (1996) and Euro III (2000) technologies. Diesel fuels included EN590 (1996), EN590 (2000), UK ultra low sulphur Diesel (UK ULSD) and Swedish Class I Diesel, while gasoline fuels comprised EN228 (1996), EN228 (1999) and UK ultra low sulphur gasoline (UK ULSG).
Technical Paper

Real-World Emissions Measurements of a Gasoline Direct Injection Vehicle without and with a Gasoline Particulate Filter

2017-03-28
2017-01-0985
The market share of Gasoline Direct Injection (GDI) vehicles has been increasing, promoted by its positive contribution to the overall fleet fuel economy improvement. It has however been reported that this type of engine is emitting more ultrafine particles than the Euro 6c Particle Number (PN) limit of 6·1011 particles/km that will be introduced in Europe as of September 2017 in parallel with the Real Driving Emission (RDE) procedure. The emissions performance of a Euro 6b GDI passenger car was measured, first in the OEM build without a Gasoline Particulate Filter (GPF) and then as a demonstrator with a coated GPF in the underfloor position. Regulated emissions were measured on the European regulatory test cycles NEDC and WLTC and in real-world conditions with Portable Emissions Measurement Systems (PEMS) according to the published European RDE procedure (Commission Regulation (EU) 2016/427 and 2016/646).
Technical Paper

Fuel and Lubricant Effects on Nucleation Mode Particle Emissions From a Euro III Light Duty Diesel Vehicle

2004-06-08
2004-01-1989
The impact of lubricant sulphur and phosphorus levels on the formation of nucleation mode particles was explored in a light duty diesel vehicle operating over the New European Drive Cycle (NEDC). All measurements were undertaken using a Scanning Mobility Particle Sizer (SMPS), sampling from a conventional Constant Volume Sampler (CVS) system. Rigorous sampling system and vehicle conditioning procedures were applied to eliminate oil carry-over and nanoparticle artifact formation. An initial vehicle selection process was undertaken on vehicles representing three fuel injection strategies, namely; distributor pump, common rail and unit injector. The vehicles met Euro III specifications and were all equipped with oxidation catalysts. Idle and low load stability were key requirements, since these conditions are the most significant in terms of their propensity to generate nucleation mode particles.
Technical Paper

Lubricant Composition Impact on the Emissions from a European Heavy Duty Diesel Engine Equipped with a Diesel Particulate Filter

2004-10-25
2004-01-3012
An Iveco Cursor 8 heavy-duty Diesel engine (7.8L, 6 cylinder) meeting Euro III emission regulations and equipped with a catalyst based passively regenerating Diesel particulate filter (CB-DPF) system, was used to investigate the impact of lubricant formulation on exhaust emissions. Measurements of both regulated and unregulated emissions were made during ESC and ETC cycles undertaken during a strictly controlled experimental protocol. Testing was carried out using ultra low sulphur, Swedish Class 1 Diesel fuel and a range of lubricant formulations. No significant effects of lubricant composition were observed on regulated gaseous emissions. However, the number of nucleation mode particles appeared to be both drive cycle and lubricant formulation dependent. Test methodology proved to be key; with engine, exhaust and dilution tunnel preconditioning and test order a major influence on ESC particle emissions.
Technical Paper

Impact of Demanding Low Temperature Urban Operation on the Real Driving Emissions Performance of Three European Diesel Passenger Cars

2018-09-10
2018-01-1819
In Europe, the development and implementation of new regulatory test procedures including the chassis dynamometer (CD) based World Harmonised Light Duty Test Procedure (WLTP) and the Real Driving Emissions (RDE) procedure, has been driven by the close scrutiny that real driving emissions and fuel consumption from passenger cars have come under in recent times. This is due to a divergence between stated certification performance and measured on-road performance, and has been most pointed in the case of NOx (oxides of nitrogen) emissions from diesel cars. The RDE test is certainly more relevant than CD test cycles, but currently certification RDE cycles will not necessarily include the most extreme low speed congested or low temperature conditions which are likely to be more challenging for NOx after-treatment systems.
Journal Article

Fuel Effects on Regulated and Unregulated Emissions from Three Light-Duty Euro 5 and Euro 6 Diesel Passenger Cars

2020-09-15
2020-01-2147
Substantial advances in European road vehicle emissions have been achieved over the past 3 decades driven by strengthening revisions in emissions legislation and enabled by advances in fuel, vehicle engine and emissions control technologies. As both vehicle technology and emissions legislation in Europe continue to evolve, Concawe has conducted a study to examine the opportunities that fuels can provide to further reduce emissions from light-duty diesel passenger cars. Three European diesel cars spanning Euro 5, Euro 6b and Euro 6d-TEMP emissions certification levels have been tested over the cold-start WLTC (Worldwide harmonized Light-duty Test Cycle) with 6 fuels: an EN590-compliant B5 (petroleum diesel containing 5% biodiesel by volume), a bio-derived paraffinic diesel, a 50:50 blend of the aforementioned fuels, a low density petroleum-derived B5, a B30 and the same B30 additized with a high dose of cetane number improver.
Technical Paper

DETR/SMMT/CONCAWE Particle Research Programme: Sampling and Measurement Experiences

2000-10-16
2000-01-2850
This paper describes the observed effects of parameters such as tunnel dilution ratio, test procedures and measurement methods on particle emissions. Attention is drawn to the transient behavior of nanoparticles within real legislated cycle conditions using conventional dilution systems. The aim of the paper is to communicate the limitations of widely used measurement equipment to enable a more confident interpretation of the particle size data. The paper describes the information obtained during the DETR/CONCAWE/SMMT Particle Research Programme with regard to the sampling and measurement of particles emitted from light duty vehicles and heavy duty engines. Light duty vehicles were tested on gasoline, diesel and LPG, while heavy duty engines were tested on both diesel and compressed gaseous fuels. Two Scanning Mobility Particle Sizer (SMPS) instruments were employed in order to cover a measurement range from a lower limit of ∼7nm up to ∼710nm.
X