Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Filtration Behavior of Diesel Particulate Filters (2)

2007-04-16
2007-01-0923
Due to its better fuel efficiency and low CO2 emissions, the number of diesel engine vehicles is increasing worldwide. Since they have high Particulate Matter (PM) emissions, tighter emission regulations will be enforced in Europe, the US, and Japan over the coming years. The Diesel Particulate Filter (DPF) has made it possible to meet the tighter regulations and Silicon Carbide and Cordierite DPF's have been applied to various vehicles from passenger cars to heavy-duty trucks. However, it has been reported that nano-size PM has a harmful effect on human health. Therefore, it is desirable that PM regulations should be tightened. This paper will describe the influence of the DPF material characteristics on PM filtration efficiency and emissions levels, in addition to pressure drop.
Technical Paper

Studies of Diesel Particulate Filter Performances by a Diesel Engine Simulator

2010-04-12
2010-01-0813
To evaluate various Diesel Particulate Filter (DPF) efficiently, accelerated tests are one of effective methods. In this study, a simulator composed by diesel fuel burners is proposed for fundamental DPF evaluations. Firstly particle size distribution measurement, chemical composition and thermal analysis were carried out for the particulate matter (PM) generated by the simulator with several combustion conditions. The PMs generated by specific conditions showed similar characteristics to PMs of a diesel engine. Through these investigations, mechanism of PM particle growth was discussed. Secondly diversified DPFs were subjected to accelerated pressure drop and filtration efficiency tests. Features of DPFs could be clarified by the accelerated tests. In addition, the correlation between DPF pressure drop performance and PM characteristics was discussed. Thirdly regeneration performance of the simulator's PM was investigated.
Technical Paper

Thermal-Mechanical Durability of DOC and DPF After-treatment System for Light Heavy Pickup Truck Application

2009-11-02
2009-01-2707
The US Environmental Protection Agency (EPA)’s heavy duty diesel emission standard was tightened beginning from 2007 with the introduction of ultra-low-sulfur diesel fuel. Most heavy duty diesel applications were required to equip Particulate Matter (PM) after-treatment systems to meet the new tighter, emission standard. Systems utilizing Diesel Oxidation Catalyst (DOC) and Catalyzed-Diesel Particulate Filter (DPF) are a mainstream of modern diesel PM after-treatment systems. To ensure appropriate performance of the system, periodic cleaning of the PM trapped in DPF by its oxidation (a process called “regeneration”) is necessary. As a result, of this regeneration, DOC’s and DPF’s can be exposed to hundreds of thermal cycles during their lifetime. Therefore, to understand the thermo-mechanical performance of the DOC and DPF is an essential issue to evaluate the durability of the system.
X