Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Human Sensitivity in Forced Feedback Systems as a Function of Frequency and Amplitude of Steering Wheel Vibrations

2009-10-06
2009-01-2831
A warning system is described as, that improves safety in an over the road truck application by warning the driver with steering wheel vibration of impending roll over. This work focuses on creating a Haptic feedback and the corresponding driver response to a range of frequencies and amplitudes of vibration at the steering wheel. The haptic feedback system is the endpoint of the entire warning system. An experimental road going system is designed, presented, and tested. The experimental data reveals information about the response of the human subject to the frequency of steering wheel vibration, while driving a vehicle. Data variability is investigated through sampling of a population of drivers. The experimental setup probing the amplitude and frequency information is analyzed. Objective measurement anomalies in the data were seen in the subjective tests as well. Some conclusions are given about the applicability of laboratory tests to moving vehicle tests.
Journal Article

Suspension Variables Influencing Static Vehicle Wheel Alignment Measurements

2016-04-05
2016-01-1571
This paper is part of a bigger research effort that aims to capture the influences of static wheel alignment measurement accuracy for road going vehicles. Vehicle alignments can and often are the bottleneck in automotive and truck assembly lines and a greater understanding of the issues are very valuable. The alignment equipment in this research has been tuned and adjusted to minimize external variables and the team of authors have 300+ vehicle measurements. Of the many things that influence the accuracy and repeatability of vehicle suspension alignment measurement and adjustment, the measurement procedures can be the most significant. This includes but is not limited to alignment machine setup and vehicle tire pressures.
X