Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Novel Tensile Testing Method to Characterize the Weld Metal Properties for Laser Welded Blank (LWB) with AHSS

2022-03-29
2022-01-0243
The automotive industry applies Laser Welded Blanks (LWB) to increase the material utilization and light-weighting of the vehicle structure. This paper introduces a novel tensile testing method to characterize the hardening behavior of the weld material with a digital image correlation (DIC) and apply it as a constitutive hardening model in forming simulations with the LWBs of GEN3 steel. Formability tests under biaxial conditions were performed with LWB of GEN3 steel. Experimental results were correlated with finite element analysis (FEA) predictions that were conducted with and without the weld material model. The results show the weld material model for the LWB improves the accuracy of FEA predictions of both necking failures on the base metal as well as cracking on the weld.
Technical Paper

A Novel Method to Nondestructively Measure the Shear Edge Properties for Edge Cracking Evaluation with Advanced High Strength Steels

2019-04-02
2019-01-1090
Nondestructive Evaluation (NDE) techniques are widely used in the manufacturing industry to control the quality of materials or final products. In the automotive industry, eddy current (EC) testing is one of the most extensively used NDE techniques for automatic in-line inspection of ferrous materials such as advanced high strength steels (AHSS). In addition, shearing is a very common forming operation in the automotive industry. With the increase of shearing clearance, the sheared-edge experiences significant work-hardening that normally decreases the formability of the sheared edge. In this paper, a novel, real-time monitoring NDE method based on the EC sensor was developed to characterize variations in shear edge quality for a DP980 steel. The developed NDE method was applied to scan the edges sheared at various clearances between 5% and 25% of the material thickness. The signal received was correlated with pre-straining introduced during the shearing process at various clearances.
X