Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Analysis of Flow around an Isolated Rotating Wheel Using a Sliding Mesh Technique

2020-04-14
2020-01-0675
Tire aerodynamics has long been viewed as a critical area in the ongoing research on vehicle drag reduction as it is a significant contributor to the overall automotive parasitic drag. Previous wind-tunnel experiments have revealed that the flow over a rotating wheel is a very complex phenomenon. This complexity arises from the tire-ground contact patch, various points of flow separation due to the wheel geometry, and the effects of wheel rotation. These aspects make the numerical simulation of this type of flow rather challenging. Existing literature shows a number of ways, like sliding mesh, by which to simulate the flow over an isolated wheel, but the problem of finding an accurate yet cost-effective solution still remains elusive. The current paper attempts to investigate the different methodologies to emulate the wheel motion. In addition, the paper will address the influence of mesh parameters and solver setting dependency of the solution.
Technical Paper

Scale-Resolved and Time-Averaged Simulations of the Flow over a NASCAR Cup Series Racecar

2023-04-11
2023-01-0735
In spite of growing popularity of scale resolved transient simulations, like the Detached Eddy Simulation (DES), among the mainstream automotive OEMs for the aerodynamic optimization of the production vehicles, Reynolds Averaged Navier-Stokes (RANS) simulations is still the most widely used Computational Fluid Dynamics (CFD) approach in motorsports. This is partially due to the usage-limitations imposed by the sanctioning bodies like, the FIA and NASCAR, restricting not only the hours of wind tunnel operation but also limiting the amount of CFD compute resource. This, coupled with speed requirements for aerodynamic development prevent the widespread use of scale-resolved modeling, such as Large Eddy Simulation (LES) or Detached Eddy Simulation (DES) methodologies that require an order of magnitude more computational resources.
X