Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Effect of Swirl on the Flow Uniformity in Automotive Exhaust Catalysts

2017-10-08
2017-01-2384
In aftertreatment system design, flow uniformity is of paramount importance as it affects aftertreatment device conversion efficiency and durability. The major trend of downsizing engines using turbochargers means the effect of the turbine residual swirl on the flow needs to be considered. In this paper, this effect has been investigated experimentally and numerically. A swirling flow rig with a moving-block swirl generator was used to generate swirling flow in a sudden expansion diffuser with a wash-coated diesel oxidation catalyst (DOC) downstream. Hot-wire anemometry (HWA) was used to measure the axial and tangential velocities of the swirling flow upstream of the diffuser expansion and the axial velocity downstream the monolith. With no swirl, the flow in the catalyst monolith is highly non-uniform with maximum velocities near the diffuser axis. At high swirl levels, the flow is also highly nonuniform with the highest velocities near the diffuser wall.
Technical Paper

A NOX Trap Study Using Fast Response Emission Analysers for Model Validation

2006-04-03
2006-01-0685
Lean burn after treatment systems using NOX traps for reducing emissions from diesel exhausts require periodic regeneration after each storage stage. Optimising these events is a challenging problem and a model capable of simulating these processes would be highly desirable. This study describes an experimental investigation, which has been designed for the purpose of validating a NOX trapping and regenerating model. A commercial computational fluid dynamics (CFD) package is used, to model NOX trapping and regeneration, using the porous medium approach. This approach has proved successful for three way catalysis modelling. To validate the model a one-dimensional NOX trap system has been tested on a turbocharged, EGR cooled, direct injection diesel engine controlled with an engine management system via DSPACE. Fast response emission analysers have been used to provide high resolution data across the after-treatment system for model validation.
X