Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Experimental Study on the Three-phase Sequential Turbocharging System with Two Unequal Size Turbochargers

2008-06-23
2008-01-1698
To improve the vehicle diesel engine performance at part-load operation, experiments on sequential turbocharging system used in a vehicle diesel engine are investigated in this paper. The brake specific fuel consumption and smoke emission of diesel engine are measured in four schemes: with the based turbocharger, with a small turbocharger, with a big turbocharger, with both small and big turbochargers. Then, a new turbocharging method named three-phase sequential turbocharging system with two unequal size turbochargers is presented by analyzing and comparing the experimental results. The experiment on a vehicle diesel engine with three-phase sequential turbocharging system shows that the brake specific fuel consumption and the smoke emission are reduced observably in complete engine speeds range, especially in the low speed operation. Finally, the transient performances of three-phase sequentially turbocharged vehicle diesel engine are analyzed by experiments.
Technical Paper

MIXPC Turbocharging System for Diesel Engines

2006-10-16
2006-01-3390
A newly developed turbocharging system, named MIXPC, is proposed and the performance of the proposed system applied to diesel engines is evaluated. The aim of this proposed system is to reduce the scavenging interference between cylinders, and to lower the pumping loss in cylinders and the brake specific fuel consumption. In addition, exhaust manifolds of simplified design can be constructed with small dimensions, low weight and a single turbine entry. A simulation code based on a second-order FVM+TVD (finite volume method + total variation diminishing) is developed and used to simulate engines with MIXPC. By simulating a 16V280ZJG diesel engine using the MPC turbocharging system and MIXPC, it is found that not only the average scavenging coefficient of MIXPC is larger than that of MPC, but also cylinders of MIXPC have more homogeneous scavenging coefficients than that of MPC, and the pumping loss and BSFC of MIXPC are lower than those of MPC.
Technical Paper

Experimental Research on Mixture Distribution of Diesel Premixed Low-Temperature Combustion

2015-09-01
2015-01-1839
The diesel premixed low-temperature combustion mode avoids the generation of thick mixture and the high temperature region in which a great amount of NOx and PM generates. It makes a significant reduction in the emissions of both NOx and PM available at the same time. However, with the quantity of pre-injection increases and the injection time advances, the emission of HC increases significantly, which causes a decrease in the combustion efficiency. Studies have shown that the flame quench caused by too thick or too lean mixture and the oil film on the chamber is the main source for the emission of HC. As a result, understanding the mechanism of atomization and evaporation of the fuel and the formation of the mixture makes significant sense. This paper focuses on the mixture formation process. And the methods of testing the distribution of the mixture, the influential factors and control methods are studied.
Technical Paper

The Effect of Bypass Valve Control on the Steady-State and Transient Performance of Diesel Engines with Regulated Two-Stage Turbocharging System

2015-09-01
2015-01-1987
The concept of regulated two-stage turbocharging system is proposed to provide high boost pressure level over a wide range of engine speed by regulating the energy distribution of two turbochargers. However, the control strategy of turbine bypass valve becomes more complicated due to the frequently changing working of vehicle diesel engines. In this paper, a two-stage turbocharging system was matched for D6114 diesel engine to improve the low-speed torque. The effect of valve opening on the steady-state and transient performance was analyzed, and two different regulating laws were determined according to the different optimum aims. Then the transient response characteristics of two different regulating laws were studied and optimized at three speeds with the transient loading test. For steady-state performance, the output power and fuel efficiency were increased with the matched turbocharging system.
X