Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Assessing a Hybrid Supercharged Engine for Diluted Combustion Using a Dynamic Drive Cycle Simulation

2018-04-03
2018-01-0969
This study uses full drive cycle simulation to compare the fuel consumption of a vehicle with a turbocharged (TC) engine to the same vehicle with an alternative boosting technology, namely, a hybrid supercharger, in which a planetary gear mechanism governs the power split to the supercharger between the crankshaft and a 48 V 5 kW electric motor. Conventional mechanically driven superchargers or electric superchargers have been proposed to improve the dynamic response of boosted engines, but their projected fuel efficiency benefit depends heavily on the engine transient response and driver/cycle aggressiveness. The fuel consumption benefits depend on the closed-loop engine responsiveness, the control tuning, and the torque reserve needed for each technology. To perform drive cycle analyses, a control strategy is designed that minimizes the boost reserve and employs high rates of combustion dilution via exhaust gas recirculation (EGR).
Technical Paper

Fuel Efficiency Estimates for Future Light Duty Vehicles, Part A: Engine Technology and Efficiency

2016-04-05
2016-01-0906
This study evaluates powertrain technologies capable of reducing light duty vehicle fuel consumption for compliance with 2025 CAFE standards. A fully integrated GT-Power engine model with physics based sub-models was developed to capture any positive or negative synergies between the technologies. The two zone multi-cylinder engine model included typical thermodynamic subroutines, with predictive combustion, flame quench and knock models, along with map-based turbocharger models to capture key combustion and efficiency behaviors. The engine model was calibrated to data from a boosted GDI engine and exercised through one series of current and production viable technology configurations for 2025 regulations.
X