Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Large-Eddy Simulation on the Effect of Droplet Size Distribution on Mixing of Passive Scalar in a Spray

2008-04-14
2008-01-0933
In this work simulation results of a round spray jet are presented using the combination of Large-Eddy Simulation (LES) and Lagrangian Particle Tracking (LPT). The simulation setup serves as a synthetic model of non-atomizing spray particles taken from the Rosin-Rammler size distribution that enter a chamber filled with gas through an inlet hole with diameter D. At the inlet gas velocity and droplet velocities are specified in addition to the initial size distribution of droplets. The Reynolds number as referred to the gas inflow velocity and jet diameter is Re=10000. The setup is advantageous for understanding the details of diesel sprays since it avoids near-nozzle spray modeling and thereof the corresponding error which is especially important in LES. Here, the implicit LES is applied so that the compressible Navier-Stokes equations are solved directly with a numerical algorithm in a fine mesh without a subgrid scale model.
Technical Paper

A Comparative Study Between 1D and 3D Computational Results for Turbulent Flow in an Exhaust Manifold and in Bent Pipes

2009-04-20
2009-01-1112
To improve today’s 1D engine simulation techniques it is important to investigate how well complex geometries such as the manifold are modeled by these engine simulation tools and to identify the inaccuracies that can be attributed to the 1D assumption. Time resolved 1D and 3D calculations have been performed on the turbulent flow through the outer runners of an exhaust manifold of a 2 liter turbocharged SI engine passenger car The total pressure drop over the exhaust manifold, computed with the 1D and 3D approach, showed to differ over an exhaust pulse. This is so even though a pressure loss coefficient correction has been employed in the 1D model to account for 3D flow effects. The 3D flow in the two outer runners of the manifold shows the presence of secondary flow motion downstream of the first major curvature. The axial velocity profile downstream of the first turn loses its symmetry. As the flow enters the second curvature a swirling motion is formed.
Technical Paper

Study of Junctions in 1-D & 3-D Simulation for Steady and Unsteady Flow

2010-04-12
2010-01-1050
In this work a comparative study between 1-D and 3-D calculations has been performed on different junctions. The geometries are a 90° T-junction with an area ratio of unity and a 45° junction with an area ratio of 1.78 between the main pipe and the side branch. The latter case had an offset between the centerlines of the main and the branched pipe. The 3-D modeling framework uses the Reynolds Averaged Navier-Stokes (RANS) equations with the k-ε model both for the steady and the unsteady flow cases. The comparison is made both under steady and pulsating flow conditions. The aim has been to assess the 1-D/3-D differences in terms of measures for flow losses. For the steady flow cases it is shown that there is a large difference between the 1-D and 3-D computed losses for both junction geometries. The differences are largest in the junction and right downstream of it.
X