Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analysis of Drive Line Vibration and Boom Noise in an All Wheel Drive Utility Vehicle

2014-04-01
2014-01-1975
The customer demand for all wheel drive (AWD) vehicles is increasing over the period of time which also requires NVH performance on par with front wheel drive vehicles. AWD vehicles are equipped with power transfer unit, propeller shaft and independent rear differential assembly to achieve their functional requirement. The additional drive train components in AWD vehicles may amplify torsional fluctuations in the drive line. Hence achieving the NVH performance of AWD vehicles on par with FWD vehicles without any major change in the existing design is a major challenge. In this work, an AWD vehicle with severe body vibration and booming noise is studied. The operational measurements are taken throughout the drive train on all sub-systems from engine to the rear part of the body in the problematic operating condition. An operational deflection shape analysis is conducted to visualize the vibration behavior of the drive train.
Technical Paper

NVH Analysis of Powertrain Start/Stop Transient Phenomenon by using Wavelet Analysis and Time Domain Transfer Path Analysis

2015-06-15
2015-01-2293
Tactile vibration during vehicle key on/off is one of the critical factors contributing to the customer perceived quality of the vehicle. Minimization of the powertrain transient vibration in operating conditions such as key on/off, tip in/out and engagement/disengagement of engine in hybrid vehicles must be addressed carefully in the vehicle refinement stage. Source of start/stop vibration depends on many factors like engine cranking, engine rpm at which the combustion process starts and rate of engine rpm rise etc. The transfer path consists of elastomeric mounts of powertrain and the part of vehicle structure from mounts to tactile response location. In this paper, the contribution of rigid body motion of powertrain of a front wheel drive vehicle during key on/off is analyzed in both frequency and time domain. The signal is analyzed in frequency domain by using fast fourier transform, short time fourier transform and wavelet analysis.
X