Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Analysis and Elimination of Howling Noise in Compact Utility Vehicle

2017-07-10
2017-28-1922
NVH is becoming one of the major factor for customer selection of vehicle along with parameters like fuel economy and drivability. One of the major NVH challenges is to have a vehicle with aggressive drivability and at the same time with acceptable noise and vibration levels. This paper focuses on the compact utility vehicle where the howling noise is occurring at higher rpm of the engine. The vehicle is powered by three cylinder turbocharged diesel engine. The noise levels were higher above 2500 rpm due to the presence of structural resonance. Operational deflection shapes (ODS) and Transfer path analysis (TPA) analysis was done on entire vehicle and powertrain to find out the major reason for howling noise at higher engine rpm. It is observed that the major contribution for noise at higher rpm is due to modal coupling between powertrain, half shaft and vehicle sub frame.
Technical Paper

Measurement Technique for Quantifying Structure Borne and Air Borne Noise Levels in Utility Vehicle

2014-04-01
2014-01-0003
Accurate quantification of structure borne noise is a challenging task for NVH engineers. The structural excitation sources of vibration and noise such as powertrain and suspension are connected to the passenger compartment by means of elastomer mounts and spring elements. The indirect force estimation methods such as complex dynamic stiffness method and matrix inversion method are being used to overcome the limitations of direct measurement. In many practical applications, the data pertaining to load dependent dynamic stiffness of the connections especially related to mounts is not available throughout the frequency range of interest which limits the application of complex dynamic stiffness method. The matrix inversion method mainly suffers from the drawback that it needs operational data not contaminated by the effect of other forces which are not considered for calculation.
Technical Paper

Experimental Determination of Acoustic Cavity Resonances of Vehicle Sub-Systems

2014-04-01
2014-01-0015
The present quiet and comfortable automobiles are the result of years of research carried out by NVH engineers across the world. Extensive studies helped engineers to attenuate the noise generated by major sources such as engine, transmission, driveline and road excitations to a considerable extent, which made other noise sources such as intake, exhaust and tire perceivable inside. Many active and passive methods are available to reduce the effect of said noise sources, but enough care needs to be taken at the design level itself to eliminate the effect of cavity resonances. Experimental investigation of cavity resonances of real systems is necessary besides the FEA model based calculations. Acoustic cavity resonance of vehicle sub systems show their presence in the interior noise through structure borne and air borne excitations. Cavity resonances for some systems e.g. intake can only be suppressed through resonators.
Technical Paper

Road Noise Identification and Reduction Measures

2013-05-13
2013-01-1917
In a scenario where cost and weight targets are becoming critical, we tend to produce lighter and more powerful vehicles. In this context, NVH becomes one of crucial parameters in overall performance delivery. Other than power train, road induced noise also becomes an important parameter within vehicle development. Predecessor vehicle is body over frame structure and here a monocoque vehicle is considered for study. Different techniques like transfer path analysis, vibro-acoustic modal analysis, operational deflection shapes are used to identify the major force paths, radiating panels and their sensitivity to noise at operator ear location. Simulation model of body is built with good correlation and input forces are given at different attachment points to predict the noise levels. This combined approach helped us in reducing the overall noise level at certain constant speed by 4 dB(A) and also with great ease. All recommendations from this exercise are implemented
Technical Paper

Experimental Investigation of Effect of Driveline Torsional Fluctuations on Overall NVH Performance of the Vehicle

2015-06-15
2015-01-2192
Meeting various customer(s) requirements with the given automotive product portfolio within the stipulated time period is a challenge. Design of product configuration matrix is an intelligent task and it requires information about vehicle performance for different configurations which helps in deciding the level of new development. Most often the situation arises, particularly in the field of NVH, to strike the right balance between engine power and structural parameters of the body. The sensitivity of engine power on the overall NVH behavior is the key information necessary to take major business decisions. In this paper, the effect of change in torsional fluctuation of the engine on the NVH behavior of the rear wheel drive vehicle is experimentally studied. The torsional fluctuation of the driveline is given as an input with the help of an electric motor to the existing test vehicle at its differential end and the current NVH levels are measured.
X