Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

2013-09-24
2013-01-2471
Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption.
Technical Paper

Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

2013-04-08
2013-01-0381
In 2011, the United States imported almost half of its petroleum. Lightweighting vehicles reduces that dependency directly by decreasing the engine, braking and rolling resistance losses, and indirectly by enabling a smaller, more efficiently operating engine to provide the same performance. The Future Automotive Systems Technology Simulator (FASTSim) tool was used to quantify these impacts. FASTSim is the U.S. Department of Energy's (DOE's) high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It steps through a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains.
X