Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Numerical Studies of Spray Combustion Processes of Palm Oil Biodiesel and Diesel Fuels using Reduced Chemical Kinetic Mechanisms

2014-04-01
2014-01-1143
Spray combustion processes of palm oil biodiesel (PO) and conventional diesel fuels were simulated using the CONVERGE CFD code. Thermochemical and reaction kinetic data (115 species and 460 reactions) by Luo et al. (2012) and Lu et al. (2009) (68 species and 283 reactions) were implemented in the CONVERGE CFD to simulate the spray and combustion processes of the two fuels. Tetradecane (C14H30) and n- heptane (C7H16) were used as surrogates for diesel. For the palm biodiesel, the mixture of methyl decanoate (C11H20O2), methyl-9-decenoate (C11H19O2) and n-heptane was used as surrogate. The palm biodiesel surrogates were combined in proportions based on the previous GC-MS results for the five major biodiesel components namely methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate.
Technical Paper

Modelling Ignition Processes of Palm Oil Biodiesel and Diesel Fuels Using a Two Stage Lagrangian Approach

2015-09-01
2015-01-1861
Designing advanced combustion engines requires a better understanding of the physical and chemical processes occurring during spray combustion. In this study, the ignition characteristics of conventional diesel and palm biodiesel fuels were simulated using the two-stage Lagrangian (TSL) simulation, a zero dimensional (0-D) modeling technique. For the diesel fuel surrogate, a detailed chemical kinetic model for n-heptane from LLNL (Lawrence Livermore National Laboratory), with 550 chemical species and 2450 elementary reactions was utilized. For the palm biodiesel, detailed mechanism (4800 species and 2450 elementary reactions) for the 5 basic biodiesel components; methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linolenate was used. Also, simulations were performed using a reduced mechanism (115 species and 460 reactions) for surrogates of palm oil biodiesel comprising mixtures of methyl decanoate, methyl decenoate and n-heptane.
X