Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

A First Principles Based Approach for Dynamic Modeling of Turbomachinery

2016-09-20
2016-01-1995
As the cost and complexity of modern aircraft systems increases, emphasis has been placed on model-based design as a means for reducing development cost and optimizing performance. To facilitate this, an appropriate modeling environment is required that allows developers to rapidly explore a wider design space than can cost effectively be considered through hardware construction and testing. This wide design space can then yield solutions that are far more energy efficient than previous generation designs. In addition, non-intuitive cross-coupled subsystem behavior can also be explored to ensure integrated system stability prior to hardware fabrication and testing. In recent years, optimization of control strategies between coupled subsystems has necessitated the understanding of the integrated system dynamics.
Technical Paper

Integrated Aircraft Electrical Power System Modeling and Simulation Analysis

2010-11-02
2010-01-1804
Advancements in electrical, mechanical, and structural design onboard modern more electric aircraft have added significant stress to the electrical systems. An electrical system level analysis tool has been created in MATLAB/Simulink to facilitate rapid system analysis and optimization to meet the growing demands of modern aircraft. An integratated model of segment level models of an electrical system including a generator, electrical accumulator unit, electrical distribution unit and electromechanical actuators has been developed. Included in the model are mission level models of an engine and aircraft to provide relevant boundary conditions. It is anticipated that the tracking of the electrical distribution through numerical integration of these various subsystems will lead to more accurate predictions of the bus power quality. In this paper the tool is used to evaluate two architectures using two different load profiles.
Technical Paper

A Real-Time Fuel Thermal Capacity and Prognostics Algorithm

2012-10-22
2012-01-2173
Advanced tactical aircraft and their propulsion systems produce an order of magnitude more heat than legacy designs and offer fewer viable heat rejection opportunities. The current approach uses aircraft fuel as a primary heat sink which is either cooled by ram air and returned to the aircraft, or rejected off the aircraft when burned by the engine. Traditionally, aircraft have been limited in mission capability by the design performance and the available fuel quantity; however, potential thermal limitations have presented a new mission challenge. Joker and bingo range notifications based on fuel quantity remaining are common on modern fighters to ensure the pilot has the foresight to complete a mission segment and return to base before running out of fuel. Now, pilots may need to consider the possibility of a similar thermal joker/bingo concept until alternative LO heat rejection methods are discovered that remove limitations.
X