Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Engine Knock Prediction and Evaluation Based on Detonation Theory Using a Quasi-Dimensional Stochastic Reactor Model

2017-03-28
2017-01-0538
Engine knock is an important phenomenon that needs consideration in the development of gasoline fueled engines. In our days, this development is supported by the use of numerical simulation tools to further understand and subsequently predict in-cylinder processes. In this work, a model tool chain based on detailed chemical and physical models is proposed to predict the auto-ignition behavior of fuels with different octane ratings and to evaluate the transition from harmless auto-ignitive deflagration to knocking combustion. In our method, the auto-ignition and emissions are calculated based on a new reaction scheme for mixtures of iso-octane, n-heptane, toluene and ethanol (Ethanol consisting Toluene Reference Fuel, ETRF). The reaction scheme is validated for a wide range of mixtures and every desired mixture of the four fuel components can be applied in the engine simulation.
Technical Paper

On the Performance of Biodiesel Blends - Experimental Data and Simulations Using a Stochastic Fuel Test Bench

2014-04-01
2014-01-1115
In this work are presented experimental and simulated data from a one-cylinder direct injected Diesel engine fuelled with Diesel, two different biodiesel blends and pure biodiesel at one engine operating point. The modeling approach focuses on testing and rating biodiesel surrogate fuel blends by means of combustion and emission behavior. Detailed kinetic mechanisms are adopted to evaluate the fuel-blends performances under both reactor and diesel engine conditions. In the first part of the paper, the experimental engine setup is presented. Thereafter the choice of the surrogate fuel blends, consisting of n-decane, α-methyl-naphtalene and methyl-decanoate, are verified by the help of experiments from the literature. The direct injection stochastic reactor model (DI-SRM) is employed to simulate combustion and engine exhaust emissions (NOx, HC, CO and CO2), which are compared to the experimental data.
Technical Paper

Soot Source Term Tabulation Strategy for Diesel Engine Simulations with SRM

2015-09-06
2015-24-2400
In this work a soot source term tabulation strategy for soot predictions under Diesel engine conditions within the zero-dimensional Direct Injection Stochastic Reactor Model (DI-SRM) framework is presented. The DI-SRM accounts for detailed chemistry, in-homogeneities in the combustion chamber and turbulence-chemistry interactions. The existing implementation [1] was extended with a framework facilitating the use of tabulated soot source terms. The implementation allows now for using soot source terms provided by an online chemistry calculation, and for the use of a pre-calculated flamelet soot source term library. Diesel engine calculations were performed using the same detailed kinetic soot model in both configurations. The chemical mechanism for n-heptane used in this work is taken from Zeuch et al. [2] and consists of 121 species and 973 reactions including PAH and thermal NO chemistry. The engine case presented in [1] is used also for this work.
Technical Paper

Simulation of CNG Engine in Agriculture Vehicles. Part 1: Prediction of Cold Start Engine-Out Emissions Using Tabulated Chemistry and Stochastic Reactor Model

2023-08-28
2023-24-0006
Worldwide, there is the demand to reduce harmful emissions from non-road vehicles to fulfill European Stage V+ and VI (2022, 2024) emission legislation. The rules require significant reductions in nitrogen oxides (NOx), methane (CH4) and formaldehyde (CH2O) emissions from non-road vehicles. Compressed natural gas (CNG) engines with appropriate exhaust aftertreatment systems such as three-way catalytic converter (TWC) can meet these regulations. An issue remains for reducing emissions during the engine cold start where the CNG engine and TWC yet do not reach their optimum operating conditions. The resulting complexity of engine and catalyst calibration can be efficiently supported by numerical models. Hence, it is required to develop accurate simulation models which can predict cold start emissions. This work presents a real-time engine model for transient engine-out emission prediction using tabulated chemistry for CNG.
Journal Article

Real-Time Simulation of CNG Engine and After-Treatment System Cold Start Part 1: Transient Engine-Out Emission Prediction Using a Stochastic Reactor Model

2023-04-11
2023-01-0183
During cold start of natural gas engines, increased methane and formaldehyde emissions can be released due to flame quenching on cold cylinder walls, misfiring and the catalyst not being fully active at low temperatures. Euro 6 legislation does not regulate methane and formaldehyde emissions. New limits for these two pollutants have been proposed by CLOVE consortium for Euro 7 scenarios. These proposals indicate tougher requirements for aftertreatment systems of natural gas engines. In the present study, a zero-dimensional model for real-time engine-out emission prediction for transient engine cold start is presented. The model incorporates the stochastic reactor model for spark ignition engines and tabulated chemistry. The tabulated chemistry approach allows to account for the physical and chemical properties of natural gas fuels in detail by using a-priori generated laminar flame speed and combustion chemistry look-up tables.
X