Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Improved AEB Control System Based on Risk Factors with Consideration of Vehicle Stability

2024-04-09
2024-01-2331
Intelligent vehicle-to-everything connectivity is an important development trend in the automotive industry. Among various active safety systems, Autonomous Emergency Braking (AEB) has garnered widespread attention due to its outstanding performance in reducing traffic accidents. AEB effectively avoids or mitigates vehicle collisions through automatic braking, making it a crucial technology in autonomous driving. However, the majority of current AEB safety models exhibit limitations in braking modes and fail to fully consider the overall vehicle stability during braking. To address these issues, this paper proposes an improved AEB control system based on a risk factor (AERF). The upper-level controller introduces the risk factor (RF) and proposes a multi-stage warning/braking control strategy based on preceding vehicle dynamic characteristics, while also calculating the desired acceleration.
Technical Paper

A Path Tracking Method for an Unmanned Bicycle Based on the Body-Fixed Coordinate Frame

2024-04-09
2024-01-2303
The present study introduces a novel approach for achieving path tracking of an unmanned bicycle in its local body-fixed coordinate frame. A bicycle is generally recognized as a multibody system consisting of four distinct rigid bodies, namely the front wheel, the front fork, the body frame, and the rear wheel. In contrast to most previous studies, the relationship between a tire and the road is now considered in terms of tire forces rather than nonholonomic constraints. The body frame has six degrees of freedom, while the rear wheel and front fork each have one degree of freedom relative to the body frame. The front wheel exhibits a single degree of freedom relative to the front fork. A bicycle has a total of nine degrees of freedom.
X