Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Soot Emission Measurements and Validation of a Mean Value Soot Model for Common-Rail Diesel Engines during Transient Operation

2009-06-15
2009-01-1904
Measurements of the soot emissions and engine operating parameters from a diesel engine during transient operation were used to investigate the influence of transient operation on the soot emissions, as well as to validate a realtime mean value soot model (MVSM, [1]) for transient operation. To maximize the temporal resolution of the soot emission and engine parameter measurements (in particular EGR), fast instruments were used and their dynamic responses characterized and corrected. During tip-in transients, an increase in the soot emissions was observed due to a short term oxygen deficit compared to steady-state operation. No significant difference was seen between steady-state and transient operation for acceleration transients. When the MVSM was provided with inputs of sufficient temporal resolution, it was capable of reproducing the qualitative and, in part, quantitative soot emission trends.
Technical Paper

Development and Validation of a Phenomenological Mean Value Soot Model for Common-Rail Diesel Engines

2009-04-20
2009-01-1277
A mean value soot model (MVSM) was developed and validated for the realtime prediction of the raw, engine-out soot emissions from common rail diesel engines. Through the consideration of five representative states during the combustion cycle, the developed MVSM determines the engine out soot emissions based on the soot formation and oxidation processes, using only parameters available from a standard engine control unit. 16 model parameters are used to describe the engine, fuel, and combustion characteristics, and must be determined for each engine and fuel combination. The MVSM was parameterized and validated using the measured soot emissions from two different engines operating with a total of three different fuels. After parameterization, the MVSM was capable of qualitatively and quantitatively reproducing the soot emissions for operating points throughout the entire operating map, including for operating regimes not considered during the parameterization.
Technical Paper

Fast Exhaust Nephelometer (FEN): A New Instrument for Measuring Cycle-Resolved Engine Particulate Emission

2016-10-17
2016-01-2329
Soot emissions from direct-injection engines are sensitive to the fuel-air mixing process, and may vary between combustion cycles due to turbulence and injector variability. Conventional exhaust emissions measurements cannot resolve inter- or intra-cycle variations in particle emissions, which can be important during transient engine operations where a few cycles can disproportionately affect the total exhaust soot. The Fast Exhaust Nephelometer (FEN) is introduced here to use light scattering to measure particulate matter concentration and size near the exhaust port of an engine with a time resolution of better than one millisecond. The FEN operates at atmospheric pressure, sampling near the engine exhaust port and uses a laser diode to illuminate a small measurement volume. The scattered light is focused on two amplified photodiodes.
Technical Paper

Application of an In-Cylinder Local Infrared Absorption Fuel Concentration Sensor in a Diesel-Ignited Dual-Fuel Engine

2016-10-17
2016-01-2310
As global energy demands continue to be met with ever evolving and stricter emissions requirements, natural gas (NG) has become a highly researched alternative to conventional fossil fuels in many industrial sectors. Transportation is one such field that can utilize the benefits of NG as a primary fuel for use in internal combustion engines (ICEs). In the context of heavy-duty on-highway transportation applications, diesel-ignited dual-fuel (DIDF) combustion of NG has been identified as a commercially viable alternative technology. Previous investigations of DIDF have examined the various trends present across the spectrum of DIDF operating space. However, in-cylinder processes are still not well understood and this investigation aims to further understanding in this area. An in-cylinder, local infrared absorption fuel concentration sensor is used to examine in-cylinder processes by comparison with previous optical and thermodynamic studies.
Technical Paper

Effect of Injection Strategies on Emissions from a Pilot-Ignited Direct-Injection Natural-Gas Engine- Part I: Late Post Injection

2017-03-28
2017-01-0774
High-pressure direct-injection (HPDI) in heavy duty engines allows a natural gas (NG) engine to maintain diesel-like performance while deriving most of its power from NG. A small diesel pilot injection (5-10% of the fuel energy) is used to ignite the direct injected gas jet. The NG burns in a predominantly non-premixed combustion mode which can produce particulate matter (PM). Here we study the effect of injection strategies on emissions from a HPDI engine in two parts. Part-I will investigates the effect of late post injection (LPI) and Part II will study the effect of slightly premixed combustion (SPC) on emission and engine performance. PM reductions and tradeoffs involved with gas late post-injections (LPI) was investigated in a single-cylinder version of a 6-cylinder,15 liter HPDI engine. The post injection contains 10-25% of total fuel mass, and occurs after the main combustion event.
Technical Paper

Effect of Injection Strategies on Emissions from a Pilot-Ignited Direct-Injection Natural-Gas Engine- Part II: Slightly Premixed Combustion

2017-03-28
2017-01-0763
High-pressure direct-injection (HPDI) in heavy duty engines allows a natural gas (NG) engine to maintain diesel-like performance while deriving most of its power from NG. A small diesel pilot injection (5-10% of the fuel energy) is used to ignite the direct injected gas jet. The NG burns in a predominantly mixing-controlled combustion mode which can produce particulate matter (PM). Here we study the effect of injection strategies on emissions from a HPDI engine in two parts. Part-I investigated the effect of late post injection (LPI); the current paper (Part-II) reports on the effects of slightly premixed combustion (SPC) on emission and engine performance. In SPC operation, the diesel injection is delayed, allowing more premixing of the natural gas prior to ignition. PM reductions and tradeoffs involved with gas slightly premixed combustion was investigated in a single-cylinder version of a 6-cylinder, 15 liter HPDI engine.
Technical Paper

On-Road CO2 and NOx Emissions for a Heavy-Duty Truck with Hydrogen-Diesel Co-Combustion

2023-04-11
2023-01-0281
Heavy-duty diesel trucking is responsible for 25%-30% of the road transportation CO2 emissions in North America. Retrofitting class-8 trucks with a complementary hydrogen fuelling system makes it possible to co-combust hydrogen and diesel in the existing internal combustion engine (ICE), thus minimizing the costs associated with switching to non-ICE platforms and reducing the barrier for the implementation of low-carbon gaseous fuels such as hydrogen. This retrofitting approach is evaluated based on the exhaust emissions of a converted truck with several thousand kilometres of road data. The heavy-duty truck used here was retrofitted with an air-intake hydrogen injection system, onboard hydrogen storage tanks, and a proprietary hydrogen controller enabling it to operate in hydrogen-diesel co-combustion (HDC) mode.
Technical Paper

Combustion and Emissions of Paired-Nozzle Jets in a Pilot-Ignited Direct-Injection Natural Gas Engine

2016-04-05
2016-01-0807
This paper examines the combustion and emissions produced using a prototype fuel injector nozzle for pilot-ignited direct-injection natural gas engines. In the new geometry, 7 individual equally-spaced gas injection holes were replaced by 7 pairs of closely-aligned holes (“paired-hole nozzle”). The paired-hole nozzle was intended to reduce particulate formation by increasing air entrainment due to jet interaction. Tests were performed on a single-cylinder research engine at different speeds and loads, and over a range of fuel injection and air handling conditions. Emissions were compared to those resulting from a reference injector with equally spaced holes (“single-hole nozzle”). Contrary to expectations, the CO and PM emissions were 3 to 10 times higher when using the paired-hole nozzles. Despite the large differences in emissions, the relative change in emissions in response to parametric changes was remarkably similar for single-hole and paired-hole nozzles.
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
Technical Paper

Characterization of Methane Emissions from a Natural Gas-Fuelled Marine Vessel under Transient Operation

2021-04-06
2021-01-0631
Natural gas is an increasingly attractive fuel for marine applications due to its abundance, lower cost, and reduced CO2, NOx, SOx, and particulate matter (PM) emissions relative to conventional fuels such as diesel. Methane in natural gas is a potent greenhouse gas (GHG) and must be monitored and controlled to minimize GHG emissions. In-use GHG emissions are commonly estimated from emission factors based on steady state engine operation, but these do not consider transient operation which has been noted to affect other pollutants including PM and NOx. This study compares methane emissions from a coastal marine vessel during transient operation to those expected based on steady state emission factors. The exhaust methane concentration from a diesel pilot-ignited, low pressure natural gas-fuelled engine was measured with a wavelength modulation spectroscopy system, during periods of increasing and decreasing engine load (between 3 and 90%).
Technical Paper

Application of Fuel Momentum Measurement Device for Direct Injection Natural Gas Engines

2015-04-14
2015-01-0915
In direct-injection engines, combustion and emission formation is strongly affected by injection quality. Injection quality is related to mass-flow rate shape, momentum rate shape, stability of pulses as well as mechanical and hydraulic delays associated with fuel injection. Finding these injector characteristics aids the interpretation of engine experiments and design of new injection strategies. The goal of this study is to investigate the rate of momentum for the single and post injections for high-pressure direct-injection natural gas injectors. The momentum measurement method has been used before to study momentum rate of injection for single and split injections for diesel sprays. In this paper, a method of momentum measurement for gas injections is developed in order to present transient momentum rate shape during injection timing. In this method, a gas jet impinges perpendicularly on a pressure transducer surface.
Technical Paper

NOx Measurement and Characterization in a Gaseous Fueled High-Pressure Direct-Injection Engine

2023-10-31
2023-01-1628
Heavy-duty (HD) vehicles are a crucial part of the transportation sector; however, strict governmental regulations will require future HD vehicles to meet even more rigid NOx emission standards than what already exist. The use of natural gas (NG) as the primary fuel in HD vehicles can immediately reduce the NOx emissions through lower flame temperatures as compared to traditional diesel and can serve as a precursor to even less carbon intensive fuels as they become more readily available. Pilot ignited direct injection natural gas (PIDING) engine technology is one example of how NG can be used in HD vehicles while maintaining diesel-like efficiency. However, NOx emissions still need to be mitigated to avoid negative air quality effects. Exhaust gas recirculation (EGR) is known to reduce in-cylinder temperatures and thus reduce in-cylinder NOx emissions in diesel engines, but the effects of EGR are not as well understood in PIDING engines.
X