Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Parametric Study on Electric Turbocharging for Passenger Cars

2020-09-15
2020-01-2224
The motor generator unit installed on the turbocharger shaft (MGU-H) provides a fundamental contribution to the amazing performances and efficiency of the last Formula 1 power units. The excess of exhaust gas energy - normally dumped through the waste-gate - can be converted into electric energy and used to push the car, by means of a second motor generator unit installed on the engine crankshaft (MGU-K). The goal of this paper is to assess pros and cons of the MGU-H technology when applied to a family of engines of different displacement, installed on a typical passenger car. The influence of engine size and cylinders layout is investigated, under the same set of hypotheses, considering both transient and steady engine operations. The baseline engine is a commercial 2.0 L, SI, 4-cylinder in-line, rated at 200 HP at 4500-5000 rpm.
Technical Paper

Port Design Criteria for 2-Stroke Loop Scavenged Engines

2016-04-05
2016-01-0610
Interest in 2-stroke engines has been recently renewed by several prototypes, developed for the automotive and/or the aircraft field. Loop scavenging, with piston controlled ports is particularly attractive, but the configurations successfully developed in the past for motorbike racing (in particular, the 125cc unit displacement, crankcase pump engines), are not suitable for automotive applications. Therefore, new criteria are necessary to address the scavenging system design of the new generation of 2-stroke automobile/aircraft engines. The paper reviews the transfer ports optimization of a loop scavenged 2-stroke cylinder, whose main parameters were defined in a previous study. The optimization has been carried by means of a parametric grid, considering 3 parameters (2 tilt angles, and the focus distance), and 3 different engine speeds (2000-3000-4000 rpm, assuming a Diesel engine). A set of scavenging CFD-3d simulations have been performed by using a customized version of KIVA-3V.
Technical Paper

An Analytical Assessment of the CO2 Emissions Benefit of Two-Stroke Diesel Engines

2016-04-05
2016-01-0659
Two-stroke diesel engines could be a promising solution for reducing carbon dioxide (CO2) emissions from light-duty vehicles. The main objective of this study was to assess the potential of two-stroke engines in achieving a substantial reduction in CO2 emissions compared to four-stroke diesel baselines. As part of this study 1-D models were developed for loop scavenged two-stroke and opposed piston two-stroke diesel engine concepts. Based on the engine models and an in-house vehicle model, projections were made for the CO2 emissions for a representative light-duty vehicle over the New European Driving Cycle and the Worldwide Harmonized Light Vehicles Test Procedure. The loop scavenged two-stroke engine had about 5-6% lower CO2 emissions over the two driving cycles compared to a state of the art four-stroke diesel engine, while the opposed piston diesel engine had about 13-15% potential benefit.
Technical Paper

Development of a High Performance Engine for a Formula SAE Racer

2012-04-16
2012-01-0833
The paper reviews the theoretical and experimental development of the engine powering the 2011 Formula SAE single seater of the University of Modena and Reggio Emilia (UNIMORE). The general design criteria followed by the UNIMORE team are discussed and compared to those chosen by other competitors. In particular, the reasons supporting the selection of the engine type (single cylinder by Husqvarna) are explained in details. The adoption of a single cylinder, instead of the more powerful four-in-line, required a much bigger effort for getting an acceptable level of brake power. Therefore, the development was massively supported by CFD simulation (both 1D and 3D) and by experiments. It was found that the most important design areas for the single cylinder are: the intake system, including the restrictor (20 mm), the intake runner and the plenum, and the muffler.
Technical Paper

Potential of Electrification Applied to Non-Road Diesel Engines

2019-09-09
2019-24-0202
The new Stage 5 European regulation for Non Road Mobile Machinery has lowered the limits on pollutant emissions for all the categories of internal combustion engines. An interesting alternative to the implementation of sophisticated after-treatment systems is to downsize the engine, and provide the extra power for peak demands with an electric motor, installed in place of the flywheel. The paper explores the potential of this concept, applied to an industrial engine, manufactured by Kohler, and delivering a maximum power of 56 kW@2600 rpm. The study is supported by a comprehensive experimental characterization of the internal combustion engine and of the electric components. A representative duty cycle is also defined, on the basis of a set of measures, taken in real operating conditions. The analysis of this reference cycle is performed by using a GT-Suite model, comparing different power split strategies.
Technical Paper

Development of a Hybrid Power Unit for Formula SAE Application: ICE CFD-1D Optimization and Vehicle Lap Simulation

2019-09-09
2019-24-0200
The paper reviews the CFD optimization of a motorcycle engine, modified for the development of a hybrid powertrain of a Formula SAE car. In a parallel paper, the choice of the donor engine (Ducati 959 Panigale: 2-cylinder, V90, 955 cc, peak power 150 HP at 10500 rpm, peak torque 102 Nm at 9000 rpm) is thoroughly discussed, along with all the hardware modifications oriented to minimize the new powertrain dimensions, weight and cost, and guarantee full reliability in racing conditions. In the current paper, the attention is focused on two main topics: 1) CFD-1D tuning of the modified Internal Combustion Engine (ICE), in order to comply with the Formula SAE regulations, as well as to maximize the power output; 2) simulation of the vehicle in racing conditions, comparison with a conventional combustion car and a full electric vehicle.
Technical Paper

2-Stroke Externally Scavenged Engines for Range Extender Applications

2012-04-16
2012-01-1022
In this work, the authors assess the potential of the 2-stroke concept applied to Range Extender engines, proposing 3 different configurations: 1) Supercharged, Compression Ignition; 2) Turbocharged, Compression Ignition; 3) Supercharged, Gasoline Direct Injection. All the engines feature a single power cylinder of 0.49l, external air feed by piston pump and an innovative induction system. The scavenging is of the Loop type, without poppet valves, and with a 4-stroke like lubrication system (no crankcase pump). Engine design has been supported by CFD simulations, both 1D (engine cycle analysis) and 3D (scavenging, injection and combustion calculations). All the numerical models used in the study are calibrated against experiments, carried out on engines as similar as possible to the proposed ones.
X