Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Experimental and Numerical Investigation of Split Injections at Low Load in an HDDI Diesel Engine Equipped with a Piezo Injector

2006-10-16
2006-01-3433
In order to investigate the effects of split injection on emission formation and engine performance, experiments were carried out using a heavy duty single cylinder diesel engine. Split injections with varied dwell time and start of injection were investigated and compared with single injection cases. In order to isolate the effect of the selected parameters, other variables were kept constant. In this investigation no EGR was used. The engine was equipped with a common rail injection system with a piezo-electric injector. To interpret the observed phenomena, engine CFD simulations using the KIVA-3V code were also made. The results show that reductions in NOx emissions and brake specific fuel consumption were achieved for short dwell times whereas they both were increased when the dwell time was prolonged. No EGR was used so the soot levels were already very low in the cases of single injections.
Technical Paper

Performance and Exhaust Emissions Analysis of a Diesel Engine Using Oxygen-Enriched Air

2018-09-10
2018-01-1785
Oxygen enriched air (EA) is a well known industrial mixture in which the content of oxygen is higher respect the atmospheric one, in the range 22-35%. Oxygen EA can be obtained by desorption from water, taking advantage of the higher oxygen solubility in water compared to the nitrogen one, since the Henry constants of this two gases are different. The production of EA by this new approach was already studied by experimental runs and theoretical considerations. New results using salt water are reported. EA promoted combustion is considered as one of the most interesting technologies to improve the performance in diesel engines and to simultaneously control and reduce pollution. This paper explores, by means of 3-dimensional computational fluid dynamics simulations, the effects of EA on the performance and exhaust emissions of a high-speed direct-injection diesel engine.
Technical Paper

Potential of Electrification Applied to Non-Road Diesel Engines

2019-09-09
2019-24-0202
The new Stage 5 European regulation for Non Road Mobile Machinery has lowered the limits on pollutant emissions for all the categories of internal combustion engines. An interesting alternative to the implementation of sophisticated after-treatment systems is to downsize the engine, and provide the extra power for peak demands with an electric motor, installed in place of the flywheel. The paper explores the potential of this concept, applied to an industrial engine, manufactured by Kohler, and delivering a maximum power of 56 kW@2600 rpm. The study is supported by a comprehensive experimental characterization of the internal combustion engine and of the electric components. A representative duty cycle is also defined, on the basis of a set of measures, taken in real operating conditions. The analysis of this reference cycle is performed by using a GT-Suite model, comparing different power split strategies.
Technical Paper

Experimental Investigation on Biodiesel from Microalgae as Fuel for Diesel Engines

2014-04-01
2014-01-1386
Biodiesel from Algae appears as an almost ideal solution to address the problem of decreasing availability of conventional fossil fuels, as well as to reduce the impact in terms of CO2 of internal combustion engines. In comparison to other biodiesels, algae do not compete for the land use with food cultures, and they have an excellent oil yield. Despite the significant amount of technical reports about the production process of algal biodiesel, detailed information about the application to current production engines is almost completely missing. The present paper describes the experimental campaign carried out on a current production 4-cylinder, 4-stroke naturally aspirated Diesel engine, running on standard Diesel oil and on a blend made up of 20% of oil manufactured by transesterification of Microalgae (B20). Performance and emission parameters have been measured over the whole engine operating range.
X