Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Comparison between 2 and 4-Stroke Engines for a 30 kW Range Extender

2014-11-11
2014-32-0114
The paper compares two different design concepts for a range extender engine rated at 30 kW at 4500 rpm. The first project is a conventional 4-Stroke SI engine, 2-cylinder, 2-valve, equipped with port fuel injection. The second is a new type of 2-Stroke loop scavenged SI engine, featuring a direct gasoline injection and a patented rotary valve for enhancing the induction and scavenging processes. Both power units have been virtually designed with the help of CFD simulation. Moreover, for the 2-Stroke engine, a prototype has been also built and tested at the dynamometer bench, allowing the authors to make a reliable theoretical comparison with the well assessed 4-Stroke unit.
Technical Paper

Performance and Exhaust Emissions Analysis of a Diesel Engine Using Oxygen-Enriched Air

2018-09-10
2018-01-1785
Oxygen enriched air (EA) is a well known industrial mixture in which the content of oxygen is higher respect the atmospheric one, in the range 22-35%. Oxygen EA can be obtained by desorption from water, taking advantage of the higher oxygen solubility in water compared to the nitrogen one, since the Henry constants of this two gases are different. The production of EA by this new approach was already studied by experimental runs and theoretical considerations. New results using salt water are reported. EA promoted combustion is considered as one of the most interesting technologies to improve the performance in diesel engines and to simultaneously control and reduce pollution. This paper explores, by means of 3-dimensional computational fluid dynamics simulations, the effects of EA on the performance and exhaust emissions of a high-speed direct-injection diesel engine.
Technical Paper

Experimental Investigation on Biodiesel from Microalgae as Fuel for Diesel Engines

2014-04-01
2014-01-1386
Biodiesel from Algae appears as an almost ideal solution to address the problem of decreasing availability of conventional fossil fuels, as well as to reduce the impact in terms of CO2 of internal combustion engines. In comparison to other biodiesels, algae do not compete for the land use with food cultures, and they have an excellent oil yield. Despite the significant amount of technical reports about the production process of algal biodiesel, detailed information about the application to current production engines is almost completely missing. The present paper describes the experimental campaign carried out on a current production 4-cylinder, 4-stroke naturally aspirated Diesel engine, running on standard Diesel oil and on a blend made up of 20% of oil manufactured by transesterification of Microalgae (B20). Performance and emission parameters have been measured over the whole engine operating range.
X