Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Technical Paper

Design and Optimization of Injector Based on Voice Coil Motor

2017-10-08
2017-01-2301
The electronic control of direct injection fuel system, which could improve engine fuel efficiency, dynamics and engine emission performance through good atomization, precise control of fuel injection time and improvement of fuel-gas mixture, is the key technology to achieve the stratified combustion and lean combustion. In this paper, a direct injection injector that based on voice coil motor was designed aiming at the technical characteristics of one 800cc two-stroke cam-less engine. Prior to a one - dimensional simulation model of injector was established by AMEsim and the maximal fuel injection demand was met via the optimization of the main parameters of the injector, the structure of the voice coil motor was optimized by magnetic equivalent circuit method. After that, the maximal flow rate of the injector was verified by the injector bench test while the atomization characteristic of the injector was verified by using a high-speed camera.
Technical Paper

Research on Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle by Thermodynamic Simulation

2017-10-08
2017-01-2408
The Opposed Piston Two-Stroke (OPTS) engine has many advantages on power density, fuel tolerance, fuel flexibility and package space. A type of self-balanced opposed-piston folded-crank train two-stroke engine for Unmanned Aerial Vehicle (UAV) was studied in this paper. AVL BOOST was used for the thermodynamic simulation. It was a quasi-steady, filling-and-emptying flow analysis -- no intake or exhaust dynamics were simulated. The results were validated against experimental data. The effects of high altitude environment on engine performance have been investigated. Moreover, the matching between the engine and turbocharger was designed and optimized for different altitude levels. The results indicated that, while the altitude is above 6000m, a multi-stage turbocharged engine system need to be considered and optimized for the UAV.
Technical Paper

Design and Performance Simulation of Opposed-Piston Folded-Cranktrain Engines

2014-04-01
2014-01-1638
In this paper, a new-type balanced opposed-piston folded-cranktrain (OPFC) two-stroke diesel engine is developed by Beijing Institute of Technology. OPFC has some potential advantages such as simple structure, good balance, compact, high power density and thermal efficiency. The structural feature of OPFC engine leads to the performance is different with the conventional engine. In order to study and verify the characteristics of this kind of engine, the folded-crank train dynamics, cylinders scavenging process and combustion process are investigated. The influence of parameters on the engine performance is investigated, includes the fuel injection timing, intake/exhaust port timing. In addition, the nozzle diameter is investigated as a main factor to affect the mixture and combustion process in the cylinder.
Technical Paper

Effect of Piston Dynamic on the Working Processes of an Opposed-Piston Two-Stroke Folded-Cranktrain Engine

2014-04-01
2014-01-1628
An opposed-piston two-stroke folded-cranktrain diesel engine was studied in this paper. In order to achieve asymmetric scavenging, asymmetric angle between two crank throws were designed. However asymmetric crank-throw angle has direct effect on the piston dynamic, which affects engine performance. This paper investigated the characteristics of the piston dynamic on an opposed-piston two-stroke folded-cranktrain diesel engine; effects of the asymmetric angle on the piston displacement, velocity and acceleration were analyzed; further researches were done to studied the effect of piston dynamic on the gas exchange performance and in-cylinder performance. The results show that, larger asymmetric angle is positive for the scavenging efficiency but negative for combustion.
X