Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Structure Designs and Evaluation of Performance Simulation of Hydraulic Transmission Electromagnetic Energy-Regenerative Active Suspension

2011-04-12
2011-01-0760
A new shock absorber with the combined mechanical-electromagnetic-hydraulic structure is proposed to recycle the energy dissipated by shock absorber in the process of driving. The suspension system built on the new shock absorber is generally called hydraulic transmission electromagnetic energy-regenerative suspension. This paper presents the working theories of the hydraulic transmission electromagnetic energy-regenerative suspension, and also builds a kinetics simulation model by applying the interdisciplinary soft ware AMESim. Based on the results of the simulation, the paper makes a comparison between the hydraulic transmission electromagnetic energy-regenerative suspension and the passive suspension, and the results reveal that the comprehensive performance of the former is superior to that of the latter, which proves the theoretical feasibilities of the energy-regenerative suspension of this structure to improve the ride comfort and the fuel economy.
Technical Paper

Simulation based Evaluation of the Electro-Hydraulic Energy-Harvesting Suspension (EHEHS) for Off-Highway Vehicles

2015-04-14
2015-01-1494
Nowadays, off-highway vehicles enjoyed a significant status in the national defense and civil construction. There is no doubt that the working conditions of off-highways are quite different from the conventional passenger cars, hence, their suspensions are particularly designed. Since the hydro-pneumatic suspension technology is maturely applied in engineering machinery, this paper presents a concept for a novel energy-harvesting device, which is applied in off-highway vehicles based on hydro-pneumatic suspension, namely, electro-hydraulic energy-harvesting suspension (EHEHS). The EHEHS took the fundamental of mechanism-electronic-hydraulic system, which consisted the following elements: a cylinder, 2 check valves, a hydro-pneumatic spring, a hydraulic motor, a DC motor, a processing circuit and a battery. In the EHEHS system, the cylinder is used to transmit the vibration energy into hydraulic energy, which is stored in hydro-pneumatic spring.
X