Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Review of Alternative Electrical Power Distribution Methods for Future Unmanned Aerial Vehicles

2008-11-11
2008-01-2925
Increasingly complex and challenging mission requirements for Unmanned Aerial Vehicles (UAVs) may in the future place demands on the vehicle electrical system. Direct current and high-frequency alternating current have been proposed as alternatives to conventional AC approaches in manned aircraft which may contribute to meeting these requirements. The paper reviews the advantages and disadvantages a number of power distribution options across a range of metrics likely to be of interest to UAV designers and operators including factors such as weight, fault management and electrical losses. Important technical challenges in the application of these technologies are identified.
Technical Paper

Aircraft Power and Propulsion Systems-Research Challenges and Opportunities for Electrical Systems

2012-10-22
2012-01-2212
NASA has compiled a set of research goals for five year periods starting 2015, 2020 and 2025 for three classes of future subsonic aircraft, N+1 (2015), N+2 (2020) and N+3 (2025). With the intention of progressively making reductions in noise emissions, greenhouse gas emissions, fuel burn and energy consumption at each of these points to achieve Technology Readiness Levels (TRL's) of between 4 and 6. In the last few years much progress has been made towards achieving these goals through the development of new technologies and designs. This paper assesses how the current More Electric Aircraft (MEA) design concepts are advancing to allow the near term, N+1 goals of reducing 32 dB of noise emissions, 60% of the landing and take-off (LTO) NOx emissions, 55% of cruise emissions and 33% saving of fuel burn and energy consumption, relative to single aisle B737-800, could be met and eventually surpassed.
X