Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Optical Study of Swirl during Combustion in a CI Engine with Different Injection Pressures and Swirl Ratios Compared with Calculations

2012-04-16
2012-01-0682
Spray and mixture formation in a compression-ignition engine is of paramount importance in the diesel combustion process. In an engine transient, when the load increases rapidly, the combustion system needs to handle low λ operation without producing high NOx emissions and large amounts of particulate matter. By changing the in-cylinder flow, the emissions and engine efficiency are affected. Optical engine studies were therefore performed on a heavy-duty engine geometry at different fuel injection pressures and inlet airflow characteristics. By applying different inlet port designs and valve seat masking, swirl and tumble were varied. In the engine tests, swirl number was varied from 2.3 to 6.3 and the injection pressure from 500 to 2500 bar. To measure the in-cylinder flow around TDC, particle image velocimetry software was used to evaluate combustion pictures. The pictures were taken in an optical engine using a digital high-speed camera.
Technical Paper

Swirl and Injection Pressure Effect on Post-Oxidation Flow Pattern Evaluated with Combustion Image Velocimetry, CIV, and CFD Simulation

2013-10-14
2013-01-2577
In-cylinder flow pattern has been examined experimentally in a heavy duty optical diesel engine and simulated with CFD code during the combustion and the post-oxidation phase. Mean swirling velocity field and its evolution were extracted from optical tests with combustion image velocimetry (CIV). It is known that the post-oxidation period has great impact on the soot emissions. Lately it has been shown in swirling combustion systems with high injection pressures, that the remaining swirling vortex in the post-oxidation phase deviates strongly from solid body rotation. Solid body rotation can only be assumed to be the case before fuel injection. In the studied cases the tangential velocity is higher in the centre of the piston bowl compared to the outer region of the bowl. The used CIV method is closely related to the PIV technique, but makes it possible to extract flow pattern during combustion at full load in an optical diesel engine.
X